Objective: Audiological tests on smartphones require consistent microphone recordings across device types with a reasonable standard uncertainty (2-3 Decibel (dB)) of the sound pressure level at the microphone. However, the calibration of smartphone microphones by the non-expert user is still an unsolved issue. We show that whistling on standardized glass bottles permits a coarse sound level calibration with an uncertainty that is smaller than the standard uncertainty of clinical audiograms (4.9dB) and enough for mobile health (mHealth) products.
Design: We define and test a calibration procedure with bottle-whistles for smartphones. The empirical sound pressure levels are used to calculate the mean and standard deviation of a single measurement.
Study Sample: Two uncalibrated studies with a total of 30 participants, one calibrated study with 11 participants.
Results: The mean maximal sound pressure level of 330 ml Vichy-shape bottle-whistles at 50 cm distance is 92.8 ± 1.6dB sound pressure level (SPL). The sound pressure level variation of a single measurement is 3.0dB SPL.
Conclusions: In comparison to other possible ways of level calibration estimates for smartphones (e.g. level of own voice, level of common environmental sounds), the current method appears to be robust in background noise and easily reproducible with glass bottles of defined dimensions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/14992027.2024.2395416 | DOI Listing |
J Morphol
January 2025
Department of Zoology, Denver Museum of Nature & Science, Denver, Colorado, USA.
The barn owl is a common research subject in auditory science due to its exceptional capacity for high frequency hearing and superb sound source localization capabilities. Despite longstanding interest in the auditory performance of barn owls, the function of its middle ear has attracted remarkably little attention. Here, we report the middle ear transfer function measured by laser Doppler vibrometry and direct measurements of inner ear pressures.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Department of Epidemiology and Statistics, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China. Electronic address:
Background: Environmental noise seriously affects people's health and life quality, but there is a scarcity of noise exposure data in metropolitan cities and at nighttime, especially in developing countries.
Objective: This study aimed to assess the environmental noise level by land use regression (LUR) models and create daytime and nighttime noise maps with high-resolution of Guangzhou municipality.
Methods: A total of 100 monitoring sites were randomly selected according to population density.
J Chem Phys
January 2025
Key Laboratory of Efficient Low-carbon Energy Conversion and Utilization of Jiangsu Provincial Higher Education Institutions, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China.
Despite the conventional view of liquid aluminum (l-Al) as a simple metal governed by the free-electron model, it exhibits unique bonding characteristics. This study uncovers a gradual transition from free electron to electride behavior in l-Al at high pressure and temperature, forming a type of two-component liquid where atomic and electride states coexist. The proportion of electride increases with pressure and temperature until reaching saturation, leading to notable changes in the pair-correlation function and coordination number of l-Al at saturation pressure.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Key Laboratory of Optoelectronic Technology & Systems of Ministry of Education, International R&D Center of Micro-Nano Systems and New Materials Technology, Chongqing University, Chongqing, 400044, China.
Sound signals not only serve as the primary communication medium but also find application in fields such as medical diagnosis and fault detection. With public healthcare resources increasingly under pressure, and challenges faced by disabled individuals on a daily basis, solutions that facilitate low-cost private healthcare hold considerable promise. Acoustic methods have been widely studied because of their lower technical complexity compared to other medical solutions, as well as the high safety threshold of the human body to acoustic energy.
View Article and Find Full Text PDFBMC Health Serv Res
January 2025
Center of Implementing Nursing Care Innovations Freiburg, Nursing Direction, Medical Center - University of Freiburg, Freiburg, Germany.
Background: The noise levels in intensive care units usually exceed the recommended limits in (inter)national recommendations. Such noise levels can affect both the recovery of intensive care patients and the performance of staff. The aim of this study was to reduce ward-based noise levels in three intensive care units (anesthesiological, neurological, and neonatological).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!