A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Trapping Ions to Enhance High-Field Energy Harvesting Performance by Filling Polar Macromolecular Dielectrics. | LitMetric

In the quest for sustainable and renewable energy sources, researchers and engineers have explored innovative technologies to harvest energy from various environmental sources. Dielectric elastomer generators (DEGs) with high energy harvesting performance have been proven to be promising energy collectors, but achieving a high dielectric constant (ε') and low electrical conductivity () under high electric fields of dielectric elastomer (DE) simultaneously is a struggle, which poses significant challenges. In this study, high-content carboxyl group-grafted liquid polybutadiene (HCPB) is synthesized and then adopted as an organic dielectric filler to blend and cocross-link with a butadiene rubber (BR) matrix to prepare DE composites with high energy harvesting performance. The introduction of carboxyl groups enhances polarization while trapping free Al in the matrix, which revolutionarily achieves a significant increase in ε' under extremely low . Ultimately, the contradiction between increased ε' and decreased under high electric fields is reconciled, resulting in a 30 HCPB/BR composite with high energy density ( = 91.9 mJ/cm) and fine power conversion efficiency ( = 24.1%). This advancement paves the way for the development of HCPB/BR composite-based DEGs with enhanced ε' and energy harvesting performance.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.4c11462DOI Listing

Publication Analysis

Top Keywords

energy harvesting
16
harvesting performance
16
high energy
12
energy
8
dielectric elastomer
8
high electric
8
electric fields
8
high
6
trapping ions
4
ions enhance
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!