Pathological cardiac hypertrophy (CH) may lead to heart failure and sudden death. MicroRNAs (miRNAs) have been documented to play crucial parts in CH. The objective of this research was to discuss the potential along with molecule mechanism of miR-495-3p in CH. In vivo CH model was induced by aortic banding (AB) in rats. Cellular hypertrophy in H9c2 rat cardiomyocytes was stimulated by angiotensin II (Ang II) treatment. Haematoxylin and eosin (HE), echocardiography and immunofluorescence staining were used to examine the alterations in cardiac function. The outcomes showed that miR-495-3p expression was high in rat model as well as in Ang II-stimulated cardiomyocytes. Besides, silenced miR-495-3p attenuated CH both in vitro and in vivo. Mechanically, miR-495-3p bound to pumilio RNA binding family member 2 (Pum2) 3'UTR and silenced its expression. Rescue assays further notarized that Pum2 silence abrogated the inhibitory impacts of miR-495-3p inhibitor on CH. In a word, the present research uncovered that miR-495-3p promoted CH by targeting Pum2. Therefore, miR-495-3p may be a novel therapeutic molecule for this disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.14715/cmb/2024.70.8.15 | DOI Listing |
Front Vet Sci
December 2024
College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China.
Background: The fat tail of sheep is an adaptive trait that facilitates their adaptation to harsh natural environments. MicroRNAs (miRNAs) have been demonstrated to play crucial roles in the regulation of tail fat deposition.
Methods: In this study, miRNA-Seq was employed to investigate the expression profiles of miRNAs during different developmental stages of sheep fat tails and elucidate the functions of differentially expressed miRNAs (DE miRNAs).
Zhonghua Zhong Liu Za Zhi
December 2024
Department of Respiratory and Critical Care Medicine, the Affiliated People's Hospital of Ningbo University, Ningbo315000, China.
To study the effects and mechanisms of activation of human lung fibroblasts (MRC-5) by exosomal RNA hsa _ circ _ 0006357 (circEZH2) derived from non-small cell lung cancer. Western blot was used to detect exosome molecular markers, reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR) and cell invasion assays to detect the effect of non-small cell lung cancer-derived exosomes on MRC-5 activation. A circRNA microarray analysis was performed in serum exosomes from patients with non-small cell lung cancer (collected at Ningbo University People's Hospital, September 2023), and levels of circEZH2 were measured in serum exosomes from non-small cell lung cancer by RT-qPCR analysis.
View Article and Find Full Text PDFInt J Biol Sci
December 2024
State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry & Molecular Biology, Medical Primate Research Center, Neuroscience Center, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China.
During cortical development, the differentiation potential of neural progenitor cells (NPCs) is one of the most critical steps in normal cortical formation and function. Defects in this process can lead to many brain disorders. MicroRNA dysregulation in the dorsolateral prefrontal cortex is associated with risk for a variety of developmental and psychiatric conditions.
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
October 2024
Department of Cardiology, Heart Center, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510280, China.
Int J Gen Med
September 2024
Department of Respiratory and Critical Care Medicine, The Affiliated People's Hospital of Ningbo University, Ningbo, People's Republic of China.
Background: It has been increasingly recognized that circular RNAs (circRNAs) act as a pivotal factor in the onset and progression of human malignancies. Yet, the specific activities and mechanistic roles of these RNAs in the context of lung adenocarcinoma (LUAD) are not fully understood.
Methods: Microarray analysis identified a novel LUAD-associated circular RNA, termed hsa_circ_0006357 (also referred to as circEZH2).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!