Cerebrovascular disease, one of the high-risk diseases worldwide, is high in morbidity, disability, mortality, and recurrence rates, which brings many harms to human beings such as physical and mental harm, economic losses, and impairment of social relations. Cerebral ischemia-reperfusion injury (CIRI) is one of the most common pathological manifestations, with mild hypothermia therapy being the most commonly used treatment in clinical practice. In this study, the research team established a CIRI animal model and found that the neuronal apoptosis rate was significantly increased, accompanied by significant ferroptosis, increased inflammation and oxidative stress damage in brain tissue, and obviously inhibited SIRT1/AMPK pathway. However, after mild hypothermia treatment, the pathological changes of CIRI rats were significantly reversed, and the SIRT1/AMPK pathway was reactivated. Therefore, mild hypothermia may achieve the purpose of CIRI repair by activating the SIRT1/AMPK signaling pathway, and targeted regulation of the SIRT1/AMPK signaling pathway may be a research direction for optimizing mild hypothermia therapy or developing new treatment plans for CIRI.

Download full-text PDF

Source
http://dx.doi.org/10.14715/cmb/2024.70.8.20DOI Listing

Publication Analysis

Top Keywords

mild hypothermia
20
hypothermia therapy
12
sirt1/ampk pathway
12
cerebral ischemia-reperfusion
8
ischemia-reperfusion injury
8
sirt1/ampk signaling
8
signaling pathway
8
mild
5
sirt1/ampk
5
pathway
5

Similar Publications

To investigate the neuroprotective mechanism of mild hypothermia (MH) in ameliorating cerebral ischemia reperfusion (IR) injury. The Pulsinelli's four-vessel ligation method was utilized to establish a rat model of global cerebral IR injury. To investigate the role of S100A8 in MH treatment of cerebral IR injury, hippocampus-specific S100A8 loss or gain of function was achieved using an adeno-associated virus system.

View Article and Find Full Text PDF

Background: Therapeutic hypothermia improves outcomes in experimental stroke models, especially after ischemia-reperfusion injury. In recent years, the safety and efficacy of hypothermia combining thrombolysis or mechanical thrombectomy have attracted widespread attention. The primary objective of the study was to evaluate the effectiveness and safety of hypothermia by combining reperfusion therapy in acute ischemic stroke patients.

View Article and Find Full Text PDF

Background: As hypothermic circulatory arrest (HCA) is being more frequently induced in patients undergoing aortic arch surgery, its safety at different degrees has become a crucial area of study. The aim of this study was to assess the surgical outcomes of mild hypothermic circulatory arrest (MI-HCA) during aortic arch surgery.

Methods: Acute type A aortic dissection (ATAAD) patients who underwent total arch replacement (TAR) and frozen elephant trunk (FET) surgery between January 2014 and December 2023 were enrolled in this study.

View Article and Find Full Text PDF

Objective: To determine whether a transesophageal echocardiography (TEE) probe can accurately measure temperature and be used to monitor temperature changes over time without overheating in an experimental model of hypothermia and rewarming.

Methods: A 6L water bath was heated with a sous vide immersion circulator to 24C, 28C, 32C and 36C to simulate severe hypothermia, moderate hypothermia, mild hypothermia, and normothermia. A TEE probe, esophageal temperature probe, and bladder temperature probe were used to measure temperature.

View Article and Find Full Text PDF

Background: Sepsis-induced acute lung injury (S-ALI) significantly contributes to unfavorable clinical outcomes. Emerging evidence suggests a novel role for ferroptosis in the pathophysiology of ALI, though the precise mechanisms remain unclear. Mild hypothermia (32-34 °C) has been shown to inhibit inflammatory responses, reduce oxidative stress, and regulate metabolic processes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!