Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Squalene (SQ) is a well-known antioxidant and anti-inflammatory agent that provides promising anti-aging and UV-protective roles on human skin. However, its strong hydrophobic nature, accompanied by issues such as poor solubility and limited tissue permeation, has created challenges for scientists to investigate its untapped potential in more complex conditions, including cancer progression. The present study assessed the potent anti-metastatic properties of a newly synthesized amphiphilic ethylene glycol SQ derivative (SQ-diEG) in melanoma, the most fatal skin cancer. In vitro and in vivo experiments have discovered that SQ-diEG may exert its potential on melanoma malignancy through the mitochondria-mediated caspase activation apoptotic signaling pathway. The potent anti-metastatic effect of SQ-diEG was observed in vitro using highly proliferative and aggressive melanoma cells. Administration of SQ-diEG (25 mg/kg) significantly decreased the tumor burden on the lung and inhibited the metastasis-associated proteins and gene markers in B16F10 lung colonization mice model. Furthermore, global gene profiling also revealed a promising role of SQ-diEG in tumor microenvironment. We anticipated that the amphiphilic nature of the SQ compound bearing ethylene glycol oligomers could potentially augment its ability to reach the pathology site, thus enhancing its therapeutic potential in melanoma.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11389383 | PMC |
http://dx.doi.org/10.1186/s12964-024-01813-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!