Two-axis twisting using Floquet-engineered XYZ spin models with polar molecules.

Nature

JILA, National Institute of Standards and Technology and Department of Physics, University of Colorado, Boulder, CO, USA.

Published: September 2024

Polar molecules confined in an optical lattice are a versatile platform to explore spin-motion dynamics based on strong, long-range dipolar interactions. The precise tunability of Ising and spin-exchange interactions with both microwave and d.c. electric fields makes the molecular system particularly suitable for engineering complex many-body dynamics. Here we used Floquet engineering to realize new quantum many-body systems of polar molecules. Using a spin encoded in the two lowest rotational states of ultracold KRb molecules, we mutually validated XXZ spin models tuned by a Floquet microwave pulse sequence against those tuned by a d.c. electric field through observations of Ramsey contrast dynamics. This validation sets the stage for the realization of Hamiltonians inaccessible with static fields. In particular, we observed two-axis twisting mean-field dynamics, generated by a Floquet-engineered XYZ model using itinerant molecules in two-dimensional layers. In the future, Floquet-engineered Hamiltonians could generate entangled states for molecule-based precision measurement or could take advantage of the rich molecular structure for quantum simulation of multi-level systems.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41586-024-07883-2DOI Listing

Publication Analysis

Top Keywords

polar molecules
12
two-axis twisting
8
floquet-engineered xyz
8
spin models
8
molecules
5
twisting floquet-engineered
4
xyz spin
4
models polar
4
molecules polar
4
molecules confined
4

Similar Publications

Biomolecular condensates play key roles in the spatiotemporal regulation of cellular processes. Yet, the relationship between atomic features and condensate function remains poorly understood. We studied this relationship using the polar organizing protein Z (PopZ) as a model system, revealing how its material properties and cellular function depend on its ultrastructure.

View Article and Find Full Text PDF

Antivortices have potential applications in future nano-functional devices, yet the formation of isolated antivortices traditionally requires nanoscale dimensions and near-zero magnetocrystalline anisotropy, limiting their broader application. Here, we propose an approach to forming antivortices in multiferroic ε-FeO with the coalescence of misaligned grains. By leveraging misaligned crystal domains, the large magnetocrystalline anisotropy energy is counterbalanced, thereby stabilizing the ground state of the antivortex.

View Article and Find Full Text PDF

Hybrid hydrogels are promising for wound dressing, tissue engineering, and drug delivery due to their exceptional biocompatibility and mechanical stability. This study synthesized hybrid hydrogels for photodynamic therapy using electron beam-initiated polymerization with varying PEGDA/gelatin ratios and irradiation doses to evaluate their effectiveness as uptake and release systems for five photosensitizers. Toluidine blue, O (TBO); methylene blue (MB); eosin, Y; indocyanine, green; and sodium meso-tetraphenylporphine-4,4',4″,4‴-tetrasulfonate were studied for their uptake and release dynamics in relation to their structural properties and the hydrogels' composition.

View Article and Find Full Text PDF

Förster resonance energy transfer (FRET) is becoming a valuable technique in gas-phase structural biology for identifying local structural motifs and conformations of biological molecules, such as peptides and proteins. This method involves labeling the biomolecule with two dyes, a donor dye and an acceptor dye, that are commonly charged rhodamines. Here we examine how different amino acid (AA) methyl esters linked to the dye via amide linkages can influence the dye transition energy and, consequently, the energy-transfer efficiency, using cryogenic ion fluorescence spectroscopy.

View Article and Find Full Text PDF

Nanozymes open up new avenues for amplifying signals in photoelectrochemical (PEC) biosensing, which are yet limited by the generated small-molecule signal reporters. Herein, a multifunctional nanoenzyme of Pt NPs/CoSAs@NC consisting of Co single atoms on N-doped porous carbon decorated with Pt nanoparticles is successfully synthesized for cascade catalytic polymerization of dopamine for constructing a highly sensitive photocurrent-polarity-switching PEC biosensing platform. Taking protein tyrosine phosphatase 1B (PTP1B) as a target model, Pt NPs/CoSAs@NC nanoenzymes are linked to magnetic microspheres via phosphorylated peptides.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!