Pedestrian two-stage crossings are common at large, busy signalized intersections with long crosswalks and high traffic volumes. This design aims to address pedestrian operation and safety by allowing navigation in two stages, negotiating each traffic direction separately. Understanding crosswalk behavior, especially during bidirectional interactions, is essential. This paper presents a two-stage pedestrian crossing model based on Physics-Informed Neural Networks (PINNs), incorporating fluid dynamics equations to determine characteristics such as speed, density, acceleration, and Reynolds number during crossings. The study shows that PINNs outperform traditional deep learning methods in calculating and predicting pedestrian fluid properties, achieving a mean squared error as low as 10. The model effectively captures dynamic pedestrian flow characteristics and provides insights into pedestrian behavior impacts. The results are significant for designing pedestrian facilities to ensure comfort and optimizing signal timing to enhance mobility and safety. Additionally, these findings can aid autonomous vehicles in better understanding pedestrian intentions in intelligent transportation systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11390893 | PMC |
http://dx.doi.org/10.1038/s41598-024-72155-y | DOI Listing |
Nat Commun
January 2025
Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA, USA.
Intracellular electrophysiology is essential in neuroscience, cardiology, and pharmacology for studying cells' electrical properties. Traditional methods like patch-clamp are precise but low-throughput and invasive. Nanoelectrode Arrays (NEAs) offer a promising alternative by enabling simultaneous intracellular and extracellular action potential (iAP and eAP) recordings with high throughput.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Electrical Engineering, Lunghwa University of Science and Technology, Taoyuan 333326, Taiwan.
The proliferation of sophisticated counterfeiting poses critical challenges to global security and commerce, with annual losses exceeding $2.2 trillion. This paper presents a novel physics-constrained deep learning framework for high-precision security ink colorimetry, integrating three key innovations: a physics-informed neural architecture achieving unprecedented color prediction accuracy (CIEDE2000 (ΔE00): 0.
View Article and Find Full Text PDFNeural Netw
January 2025
School of Engineering Sciences, Lappeenranta-Lahti University of Technology LUT, Lahti, 15110, Finland; Atmospheric Modelling Centre Lahti, Lahti University Campus, Lahti, 15140, Finland; Institute for Atmospheric and Earth System Research (INAR), The University of Helsinki, Helsinki, 00014, Finland.
Light microscopy is a practical tool for advancing biomedical research and diagnostics, offering invaluable insights into the cellular and subcellular structures of living organisms. However, diffraction and optical imperfections actively hinder the attainment of high-quality images. In recent years, there has been a growing interest in applying deep learning techniques to overcome these challenges in light microscopy imaging.
View Article and Find Full Text PDFTomography
November 2024
KYAMOS Ltd., 37 Polyneikis Street, Strovolos, Nicosia 2047, Cyprus.
: Accurate reconstruction of internal temperature fields from surface temperature data is critical for applications such as non-invasive thermal imaging, particularly in scenarios involving small temperature gradients, like those in the human body. : In this study, we employed 3D convolutional neural networks (CNNs) to predict internal temperature fields. The network's performance was evaluated under both ideal and non-ideal conditions, incorporating noise and background temperature variations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!