A europium (III) functionalized hydrogen-bonded organic framework for sensitively ratiometric fluorescent sensing of tetracycline.

Anal Bioanal Chem

Jiangxi Province Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, China.

Published: November 2024

As a kind of antibiotic, tetracycline (TC) might remain in animal blood and milk products during use, which poses a risk to humans after consumption. Therefore, a ratiometric fluorescence probe was proposed for the detection of TC, which was based on an Eu functionalized hydrogen-bonded organic framework (HOF). Since there are a large number of N and O atoms in the skeleton of HOF, more Eu could be loaded onto HOF by forming coordinate bonds, while preserving the fluorescence of luminol monomer in HOF. In the presence of TC, the fluorescence of luminol monomer was attenuated at 425 nm due to inner filter effect (IFE), while TC selectively enhanced the fluorescence peak at 617 nm of Eu under the influence of antenna effect (AE). This highly sensitive probe could detect TC in the range of 0.1-60 μM and had a low limit of detection of 8.51 nM. Besides, the HOF@Eu probe was able to detect TC in actual samples (milk and tap water) with good recoveries (95.09%-111.51%) and precision (R < 4.78%), indicating this probe has great application potential for the detection of TC in food.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00216-024-05494-4DOI Listing

Publication Analysis

Top Keywords

functionalized hydrogen-bonded
8
hydrogen-bonded organic
8
organic framework
8
fluorescence luminol
8
luminol monomer
8
probe detect
8
europium iii
4
iii functionalized
4
framework sensitively
4
sensitively ratiometric
4

Similar Publications

Synthetic photobiocatalysts are promising catalysts for valuable chemical transformations by harnessing solar energy inspired by natural photosynthesis. However, the synergistic integration of all of the components for efficient light harvesting, cascade electron transfer, and efficient biocatalytic reactions presents a formidable challenge. In particular, replicating intricate multiscale hierarchical assembly and functional segregation involved in natural photosystems, such as photosystems I and II, remains particularly demanding within artificial structures.

View Article and Find Full Text PDF

A luminescent lanthanide functionalized hydrogen-bonded organic framework hydrogel: Fluorescence sensing platform for copper and iron ions detection.

Talanta

December 2024

State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science & Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, 1239 Siping Road, Shanghai, 200092, China. Electronic address:

The excessive presence of the metal ions Cu and Fe in the environment poses a serious threat to ecosystems and human health, so timely and accurate detection of them has become essential and urgent. In this paper, a novel hydrogel-based fluorescent sensor, named ME-IPA@SA-TbZn, was fabricated facilely through an in-situ cross-linking modification method and was used for the detection of Cu and Fe in water bodies. The ME-IPA@SA-TbZn is essentially a hybrid hydrogel bead that exhibits vibrant fluorescence, employing Tb and Zn functionalized hydrogen-bonded organic frameworks (HOFs) as the fluorescence functional core and sodium alginate (SA) as the hydrogel matrix.

View Article and Find Full Text PDF

The achievement of sufficient dispersion of vulcanization accelerators is critical to tailoring superior cross-linked elastomers. Modern recipes rely on multicomponent formulations with silica particles covered by coupling agents. We study the molecular properties of select accelerators in polyisoprene melts and their affinity for functionalized surfaces via extensive all-atom molecular dynamics simulations.

View Article and Find Full Text PDF

Collapse and Protein Folding: Should We Be Surprised that Biothermodynamics Works So Well?

Annu Rev Biophys

December 2024

1Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA; email:

A complete understanding of protein function and dynamics requires the characterization of the multiple thermodynamic states, including the denatured state ensemble (DSE). Whereas residual structure in the DSE (as well as in partially folded states) is pertinent in many biological contexts, here we are interested in how such structure affects protein thermodynamics. We examine issues related to chain collapse in light of new developments, focusing on potential complications arising from differences in the DSE's properties under various conditions.

View Article and Find Full Text PDF

Bifunctional Azido(thio)ureas from an -Protected 2-Amino-2-deoxy-d-glucopyranose: Synthesis and Structural Analyses.

Molecules

November 2024

Departamento de Química Orgánica e Inorgánica, Facultad de Ciencias, and Instituto del Agua, Cambio Climático y Sostenibilidad (IACYS)-Unidad de Química Verde y Desarrollo Sostenible, Universidad de Extremadura, 06006 Badajoz, Spain.

This publication reports a facile and convenient preparation of tri--acetyl-glucopyranoses, derived from the corresponding 2-deoxyaminosugar, where the vicinal anomeric and C2 positions are decorated by azido and (thio)ureido groups, respectively. This double functionalization leads to an inherently chiral core incorporating the versatile azido and (thio)ureido linkages prone to further manipulation. The latter also provides a structural element for hydrogen-bonded donor-acceptor (HB-DA) sites, which are of immense value in organocatalytic pursuits.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!