Construction of amino acids reduced alphabets from molecular descriptors for interpretation of N-carbamylase, luciferase and PI3K mutations.

Biosystems

CHIMA Grupo de Química Matemática, Universidad de Pamplona, Km 1 Vía Bucaramanga, Pamplona, Colombia.

Published: December 2024

The classification of amino acids has proven to be a useful tool for understanding the importance of sequence in protein function. The reduced amino acid alphabets are an example of these classifications, which, when built from physicochemical, structural and quantum characteristics of the amino acids, allow it to simplify the representation of the sequences, being useful in the modelling, design and understanding of proteins. So, an objective selection of amino acids properties is important, due classes formed in a reduced alphabet depend on the descriptors used for classification. In this research, based on a careful selection of descriptors for the 20 amino acids, through techniques such as the information content index and hierarchical cluster analysis with ties in proximity, 20,871,586 reduced amino acid alphabets were constructed. This large collection of reduced alphabets was been used to interpret alterations in the function of three proteins: N-carbamylase, Luciferase, and PI3K, caused by amino acid changes in their sequences. For this, the similar and different descriptors linked to these mutations were studied. Properties such as volume, hydrophobicity, charge and autocorrelation can be associated with variations in the behaviour of these proteins, while the frequency in specific secondary structures, the Gibbs free energy and some topological and quantum properties can be considered as the causes of preventing the deactivation of protein function. This work offers the most complete collection of reduced alphabets that promise to be a useful tool for the interpretation of alterations caused by amino acid mutations in the protein sequence.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biosystems.2024.105331DOI Listing

Publication Analysis

Top Keywords

amino acids
20
amino acid
16
reduced alphabets
12
n-carbamylase luciferase
8
luciferase pi3k
8
amino
8
protein function
8
reduced amino
8
acid alphabets
8
collection reduced
8

Similar Publications

Nitrogen Assimilation Plays a Role in Balancing the Chloroplastic Glutathione Redox Potential Under High Light Conditions.

Plant Cell Environ

January 2025

The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.

Nitrate reduction requires reducing equivalents produced by the photosynthetic electron transport chain. Therefore, it has been suggested that nitrate assimilation provides a sink for electrons under high light conditions. We tested this hypothesis by monitoring photosynthetic efficiency and the chloroplastic glutathione redox potential (chl-E) of plant lines with mutated glutamine synthetase 2 (GS2) and ferredoxin-dependent glutamate synthase 1 (GOGAT1).

View Article and Find Full Text PDF

Background: Perilla frutescens (L.) Britt. (Lamiaceae) leaves are essential culinary and medicinal herbs, native to East Asian countries.

View Article and Find Full Text PDF

Comprehensive analysis of the multi-rings mitochondrial genome of Populus tomentosa.

BMC Genomics

January 2025

State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.

Background: Populus tomentosa, known as Chinese white poplar, is indigenous and distributed across large areas of China, where it plays multiple important roles in forestry, agriculture, conservation, and urban horticulture. However, limited accessibility to the mitochondrial (mt) genome of P. tomentosa impedes phylogenetic and population genetic analyses and restricts functional gene research in Salicaceae family.

View Article and Find Full Text PDF

Transdermal drug delivery (TDD) represents a transformative paradigm in drug administration, offering advantages such as controlled drug release, enhanced patient adherence, and circumvention of hepatic first-pass metabolism. Despite these benefits, the inherent barrier function of the skin, primarily attributed to the stratum corneum, remains a significant impediment to the efficient permeation of therapeutic agents. Recent advancements have focused on macromolecular-assisted permeation enhancers, including carbohydrates, lipids, amino acids, nucleic acids, and cell-penetrating peptides, which modulate skin permeability by transiently altering its structural integrity.

View Article and Find Full Text PDF

Taurine prevents mitochondrial dysfunction and protects mitochondria from reactive oxygen species and deuterium toxicity.

Amino Acids

January 2025

Laboratory of Molecular Biology and Immunology, Department of Pharmacy, University of Patras, 26500, Rio-Patras, Greece.

Taurine, although not a coding amino acid, is the most common free amino acid in the body. Taurine has multiple and complex functions in protecting mitochondria against oxidative-nitrosative stress. In this comprehensive review paper, we introduce a novel potential role for taurine in protecting from deuterium (heavy hydrogen) toxicity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!