Exploratory research on the effective chemical basis of tanreqing injection for treating acute lung injury: In vivo, in vitro and in silico.

J Ethnopharmacol

National Center for Drug Screening, Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; Lingang laboratory, Shanghai, 201203, China. Electronic address:

Published: January 2025

Ethnopharmacological Relevance: Sepsis-induced acute lung injury (ALI) presents with significant morbidity and mortality in clinical settings. Tanreqing Injection (TRQI) has been clinically recommended for the treatment of ALI; however, the specific active chemical constituents remain unidentified.

Aim Of The Study: This study aimed to elucidate the potential pharmacologically active components and the underlying mechanisms of TRQI in the treatment of sepsis-induced ALI.

Materials And Methods: High-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) techniques were employed to identify the effective chemical constituents of TRQI. Additionally, an in vitro study was conducted using Raw264.7 macrophage cells stimulated with lipopolysaccharide (LPS) to evaluate the inhibitory effects of TRQI. An acute lung injury model produced by LPS was intraperitoneal injection in mice to assess the ALI-inhibitory effect of TRQI. The lung's pathological characteristics were examined using hematoxylin and eosin staining. Enzyme-linked immunosorbent assay (ELISA) and QPCR were performed to confirm the pharmaceutical effect. Network pharmacology was employed for mechanistic exploration, incorporating GO, and PPI analyses of targets. Src inhibitor and JNK agonist used to investigate the dependence of associated signaling pathways.

Results: Combining pharmacokinetic characteristics, lung first-pass effect and anti-inflammatory effects, the main components of TRQI for treating sepsis induced ALI were narrowed down to seven compounds: chlorogenic acid, scutellarin, wogonoside, oroxyloside, oroxylin A and baicalein. Network pharmacology indicated that Src/JNK signaling pathway, may be the main regulatory pathway for treatment of actue lung injury. Next by using Src inhibitor, Src inhibition partly diminished the protective effects of TRQI in LPS-injected mice. Pretreatment with JNK agonist anisomycin abolished the protective effects of lung injury in vivo.

Conclusions: TRQI is injected, the seven compounds could be presented in vivo, which can improve ALI by inhibiting Src-JNK signaling.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jep.2024.118780DOI Listing

Publication Analysis

Top Keywords

lung injury
20
acute lung
12
effective chemical
8
tanreqing injection
8
trqi
8
chemical constituents
8
effects trqi
8
network pharmacology
8
src inhibitor
8
jnk agonist
8

Similar Publications

Clinical and imaging features of co-existent pulmonary tuberculosis and lung cancer: a population-based matching study in China.

BMC Cancer

January 2025

Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, P.R. China.

Background: Co-existent pulmonary tuberculosis and lung cancer (PTB-LC) represent a unique disease entity often characterized by missed or delayed diagnosis. This study aimed to investigate the clinical and radiological features of patients diagnosed with PTB-LC.

Methods: Patients diagnosed with active PTB-LC (APTB-LC), inactive PTB-LC (IAPTB), and LC alone without PTB between 2010 and 2022 at our institute were retrospectively collected and 1:1:1 matched based on gender, age, and time of admission.

View Article and Find Full Text PDF

Background: Ex-vivo lung perfusion (EVLP) has potential to expand donor lung utilization, evaluate allograft viability, and mitigate ischemia-reperfusion injury. However, trends in EVLP use and recipient outcomes are unknown on a national scale. We examined trends in EVLP use and recipient outcomes in the United States.

View Article and Find Full Text PDF

Tangeretin alleviates sepsis-induced acute lung injury by inhibiting ferroptosis of macrophage via Nrf2 signaling pathway.

Chin Med

January 2025

Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China.

Background: Sepsis-induced acute lung injury (ALI) is a severe clinical condition accompanied with high mortality. Tangeretin, which is widely found in citrus fruits, has been reported to exert antioxidant and anti-inflammatory properties. However, whether tangeretin protects against sepsis-induced ALI and the potential mechanisms remain unclear.

View Article and Find Full Text PDF

Evidence and perspectives on miRNA, circRNA, and lncRNA in myocardial ischemia-reperfusion injury: a bibliometric study.

J Cardiothorac Surg

January 2025

Department of Cardiology, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Capital Medical University, Beijing, 100069, China.

Objective: miRNA, circRNA, and lncRNA play crucial roles in the pathogenesis and progression of myocardial ischemia-reperfusion injury (MI/RI). This study aims to provide valuable insights into miRNA, circRNA, lncRNA, and MI/RI from a bibliometric standpoint, with the goal of fostering further advancements in this area.

Methods: The relevant literature in the field of miRNA, circRNA, lncRNA, and MI/RI was retrieved from the Science Citation Index Expanded (SCI-E) database within Web of Science.

View Article and Find Full Text PDF

TREM2 alleviates sepsis-induced acute lung injury by attenuating ferroptosis via the SHP1/STAT3 pathway.

Free Radic Biol Med

January 2025

Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning 530021, Guangxi Zhuang Autonomous Region, China; Key Laboratory for Basic Science and Prevention of Perioperative Organ Disfunction, Guangxi Medical University Cancer Hospital, Nanning 530021, Guangxi Zhuang Autonomous Region, China. Electronic address:

Sepsis-induced acute lung injury (ALI) is a complex and life-threatening condition characterized by excessive inflammatory responses, ferroptosis, and oxidative stress. A comprehensive investigation and effective therapeutic strategies are crucial for managing this condition. In this study, we established in vivo sepsis models using lipopolysaccharide (LPS) in wild-type (WT) mice and triggering receptor expressed on myeloid cells 2 (TREM2) knockout (TREM2-KO) mice to assess lung morphology, oxidative stress, and ferroptosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!