Unraveling impacts on carbon, water and energy exchange of Pinus plantations in South American temperate ecosystems.

Sci Total Environ

Departamento de Métodos Cuantitativos y Sistemas de Información. Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE Ciudad Autónoma de Buenos Aires, Argentina; IFEVA, Facultad de Agronomía, Universidad de Buenos Aires, CONICET, Av. San Martín 4453, C1417DSE Ciudad Autónoma de Buenos Aires, Argentina; Instituto Nacional de Investigación Agropecuaria (INIA) - La Estanzuela, Ruta 50, Km. 11, Colonia, Uruguay; IECA, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay.

Published: November 2024

Tree plantations are expanding in southern South America and their effects on ecosystem services, particularly climate regulation, are still not well understood. Here, we used remote sensing techniques and a paired design to analyze ≈33,000 ha of Pinus plantations along a broad geographical and environmental gradient (26-43° South latitude, 54-72° West longitude). Radiation interception, surface temperature, evapotranspiration, and albedo were assessed both in tree plantations stands and in adjacent uncultivated areas. Additionally, the climatic impact of tree plantations was quantified by analyzing changes in atmospheric radiative forcing and its carbon (C) equivalent. Tree plantations intercepted more radiation when replacing steppes, grasslands, and shrublands but not when replacing forests. The control exerted on radiation interception by precipitation decreased in both space and time after tree plantation. Furthermore, evapotranspiration notably increased in tree plantations. The lower albedo of tree plantations compared to uncultivated adjacent areas induces global warming through the biophysical pathway. Thus, the climate benefits of afforestation through C sequestration can be counteracted by 18 to 83 % due to albedo changes. It is necessary to fully consider the biophysical effects and water footprint of tree plantations in public policies that promote them, as well as in international carbon accounting mechanisms.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.176150DOI Listing

Publication Analysis

Top Keywords

tree plantations
28
plantations
9
pinus plantations
8
tree
8
radiation interception
8
unraveling impacts
4
impacts carbon
4
carbon water
4
water energy
4
energy exchange
4

Similar Publications

We elucidated the changes of soil microbial biomass and community structure in soil profiles under four typical land use types (farmland, grassland, secondary forest and plantation)and across five soil layers (0-10, 10-20, 20-30, 30-40, 40-50 cm) in the northern mountainous region of Hebei Province. We measured soil microbial biomass by phospholipid fatty acid (PLFA) method, and investigated the effects of land use and soil depth on soil microbial biomass and community structure by variance analysis, correlation analysis and redundancy analysis. The results showed that soil water content, bulk density, and organic carbon content of farmland differed significantly from other land use types.

View Article and Find Full Text PDF

Carbon reserves in coffee agroforestry in the Peruvian Amazon.

Front Plant Sci

December 2024

Centro de Investigación e Innovación para el Cambio Climático (CiiCC), Universidad Santo Tomás, Valdivia, Chile.

Introduction: Secondary forests and coffee cultivation systems with shade trees might have great potential for carbon sequestration as a means of climate change adaptation and mitigation. This study aimed to measure carbon stocks in coffee plantations under different managements and secondary forest systems in the Peruvian Amazon rainforest (San Martín Region).

Methods: The carbon stock in secondary forest trees was estimated using allometric equations, while carbon stocks in soil, herbaceous biomass, and leaf litter were determined through sampling and laboratory analysis.

View Article and Find Full Text PDF

causing Dieback disease in (Lour.) Per. in China.

Plant Dis

December 2024

Chinese Academy of Sciences, South China Botanical Garden, Guangzhou, Guangdong, China;

Litsea cubeba (Lour.) Per., named as May Cang, is a rare deciduous evergreen tree and cultivated for its ethnopharmacological properties and medicinal uses.

View Article and Find Full Text PDF

Research on using Aquilaria sinensis callus to evaluate the agarwood-inducing potential of fungi.

PLoS One

December 2024

Key Laboratory of National Forestry and Grassland Administration for Control of Diseases and Pests of South Plantation, Central South University of Forestry and Technology, Changsha, China.

Agarwood is a precious resinous heartwood highly valued for its cultural, religious, and medicinal significance. With the increasing market demand, natural agarwood resources are rapidly depleting, making the development of effective artificial induction methods for agarwood highly significant. This study aims to explore the feasibility of using callus tissue to assess the ability of fungi to induce agarwood formation.

View Article and Find Full Text PDF

Planted forests have expanded globally over the last three decades and are expected to act as carbon sinks to mitigate further climate change. However, the planted coniferous forests in Japan are now predicted to shrink in area and age in the future. To quantify the impact of the shrinking and aging of Japanese cedar (Cryptomeria japonica D.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!