Dissolved organic carbon (DOC) components can be highly variable in aquatic ecosystems, and play a pivotal role in the global carbon cycles. To comprehend potential effects of nutrient enrichment on portion of DOC biodegradability (%BDOC), we conducted an extensive investigation on 26 urban lakes in a major metropolitan area in subtropical China in a small gradient of trophic levels from mesotrophic to light and middle eutrophic. In addition to field measurements on lake ambient conditions and laboratory analysis of DOC characteristics, we conducted a 28-day temperature-controlled incubation experiment, in which %BDOC of lake waters was determined. In the mesotrophic waters, %BDOC ranged from 0.6 to 41.4 % (11.2 ± 8.9 %). The %BDOC levels spanned from 5.2 to 20.2 % (10.7 ± 4.0 %) in the light eutrophic waters, and the %BDOC ranged from 2.7 to 35.0 % (13.7 ± 8.4 %) in the middle eutrophic waters. We found a significant change in DOC chemical composition across the study lakes characterized by shifting of trophic levels. Although the experiment found significant changes in the factors that can influence %BDOC, a significant difference was not observed in %BDOC among the three trophic levels. The %BDOC was primarily influenced by the inherent DOC concentration and aromaticity, with eutrophication leading to the varied driving factors of %BDOC in lake systems. We show that most of the lake water DOC was stable. The findings indicate the intricate interplay between biological metabolism and nutrient availability governing %BDOC dynamics in urban lake ecosystems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.176177 | DOI Listing |
Sci Total Environ
January 2025
Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway.
The presence of the long-lived radionuclides Cs and Sr in ecosystems is a major environmental concern because bioavailable forms of the radionuclides are readily transferred to living organisms. The present study investigated how holometabolous insect development influences the fate of radiocaesium and radiostrontium by examining the behaviour of tracers (Cs and Sr) and stable elements during the larval feeding stage (21-23 days old), the pupal stage, and the adult stage. We aimed to evaluate the degree to which an herbivore or a detritivore food chain could serve as transfer pathways to higher trophic levels in terms of accumulation potential, and during which stage of development the accumulation potential is highest.
View Article and Find Full Text PDFJ Environ Manage
January 2025
University of Latvia, The Faculty of Science and Technology, Jelgava Street 1, LV-1004 Riga, Latvia.
Forestry activities, i.e., drainage system maintenance or regeneration fellings may alter the water quality in catchments as well as in runoff and induce risks of acidification.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun, 248007, India.
This study provides a detailed approach to evaluating water quality in the Haridwar district, Uttarakhand, India, by integrating physicochemical and microbiological investigations. It employs multivariate analysis and applies water quality and trophic state indices to evaluate the current state of the water and identify potential sources of contamination. The results from the correlation matrix highlight the dynamic interactions between different water quality parameters.
View Article and Find Full Text PDFPLoS One
January 2025
Victoria University of Wellington, Wellington, New Zealand.
Photosynthetic eukaryotic microalgae are key primary producers in the Antarctic sea ice environment. Anticipated changes in sea ice thickness and snow load due to climate change may cause substantial shifts in available light to these ice-associated organisms. This study used a laboratory-based experiment to investigate how light levels, simulating different sea ice and snow thicknesses, affect fatty acid (FA) composition in two ice associated microalgae species, the pennate diatom Nitzschia cf.
View Article and Find Full Text PDFMicrobiome
January 2025
Australian Institute of Marine Science, PMB no3 Townsville MC, Townsville, QLD, 4810, Australia.
Background: Seawater microbes (bacteria and archaea) play essential roles in coral reefs by facilitating nutrient cycling, energy transfer, and overall reef ecosystem functioning. However, environmental disturbances such as degraded water quality and marine heatwaves, can impact these vital functions as seawater microbial communities experience notable shifts in composition and function when exposed to stressors. This sensitivity highlights the potential of seawater microbes to be used as indicators of reef health.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!