Interactions of multiple stressors on the Bombay-duck Harpadon nehereus population in a complex estuarine ecosystem.

Sci Total Environ

CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China. Electronic address:

Published: November 2024

In an era marked by unprecedented anthropogenic change, marine systems are increasingly subjected to interconnected and dynamic external stressors, which profoundly reshape the behavior and resilience of marine ecological components. Nevertheless, despite widespread recognition of the significance of stressor interactions, there persist notable knowledge deficits in quantifying their interactions and the specific biological consequences that result. To bridge this crucial gap, this research detected and examined the causal relationships between five key exogenous stressors in a complex estuarine ecosystem. Furthermore, a Bayesian Hierarchical Spatio-temporal modeling framework was proposed to quantitatively evaluate the distinct, interactive, and globally sensitive effects of multiple stressors on the population dynamics of a crucial fish species: Harpadon nehereus. The results showed that interactions were detected between fisheries pressure (FP), the Pacific Decadal Oscillation index (PDO), runoff volume (RV), and sediment load (SL), with five of these interactions producing significant synergistic effects on H. nehereus biomass. The SL*PDO and RV*PDO interactions had positive synergistic effects, albeit through differing processes. The former interaction amplified the individual effects of each stressor, while the latter reversed the direction of the original impact. Indeed overall, the synergistic effect of multiple stressors was not favorable, with FP in particular posing the greatest threat to H. nehereus population. This threat was more pronounced at high SL or negative PDO phases. Therefore, local management efforts aimed at addressing multiple stressors and protecting resources should consider the findings. Additionally, although the velocity of climate change (VoCC) failed to produce significant interactions, changes in this stressor had the most sensitive impacts on the response of H. nehereus population. This research strives to enhance the dimensionality, generalizability, and flexibility of the quantification framework for marine multi-stressor interactions, aiming to foster broader research collaboration and jointly tackle the intricate pressures facing marine ecosystems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.176138DOI Listing

Publication Analysis

Top Keywords

multiple stressors
16
nehereus population
12
interactions
8
harpadon nehereus
8
complex estuarine
8
estuarine ecosystem
8
synergistic effects
8
stressors
6
nehereus
5
interactions multiple
4

Similar Publications

Habituation of the biological response to repeated psychosocial stress: a systematic review and meta-analysis.

Neurosci Biobehav Rev

January 2025

Department of Psychiatry and Psychotherapy, Philipps University Marburg, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany; Center for Mind, Brain and Behaviour, Philipps University Marburg, Hans-Meerwein-Str. 6, 35032 Marburg, Germany. Electronic address:

Recurrent psychosocial stress poses a significant health challenge, prompting research into mechanisms of successful adaptation. Physiological habituation, defined as decreased reactivity to repeated stressors, is pivotal in protecting the organism from allostatic load. Here, we systematically review and meta-analyze data from studies investigating the capacity of central stress systems to habituate when repeatedly exposed to a standardized psychosocial stressor, the Trier Social Stress Test (k=47).

View Article and Find Full Text PDF

Soil cadmium pollution elicits sex-specific plant volatile emissions in response to insect herbivory in eastern cottonwood Populus deltoides.

Plant Physiol Biochem

December 2024

Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Sciences, Sichuan University, Chengdu, 610041, Sichuan, China. Electronic address:

Soil heavy metal pollution is a major abiotic stressor frequently encountered by plants in conjunction with other biotic stresses like insect herbivory. Yet, it remains largely unexplored how soil metal pollution and insect herbivory act together to influence emissions of plant volatile organic compounds (VOCs), which mediate multiple ecological functions and play crucial roles in atmospheric processes. Here, we assessed the individual and combined effects of soil cadium (Cd) pollution and insect herbivory by Clostera anachoreta on VOC emissions from the seedlings of eastern cottonwood Populus deltoides, and whether these effects depend on plant sex.

View Article and Find Full Text PDF

Evaluating the psychosocial experiences of participants in HIV cure research before, during, and after analytical treatment interruptions: A longitudinal qualitative study in the United States.

Soc Sci Med

December 2024

Division of Infectious Diseases and Global Public Health, School of Medicine, University of California, San Diego, 9500 Gilman Drive, MC 0507, La Jolla, CA, 92093, United States. Electronic address:

The lack of socio-behavioral research on stress and psychosocial experiences among research participants who undergo analytical treatment interruption (ATI) in HIV cure studies underscores a critical gap in cure science. Existing literature acknowledges mixed and potentially adverse mental health impacts of ATIs among trial participants, but empirical insights before, during, and after clinical studies are scarce. We used longitudinal in-depth interviews with 11 participants in HIV cure-related research to explore their experiences with stress, coping, and psychological well-being before, during, and after an ATI.

View Article and Find Full Text PDF
Article Synopsis
  • Rice is a vital global staple, feeding over half the population but facing threats from climate change, pests, and diseases that compromise its sustainability.
  • CRISPR-Cas9 technology offers a promising solution for improving rice yield and resilience by allowing precise gene editing without introducing foreign DNA.
  • This study outlines various CRISPR-based techniques to enhance rice's ability to withstand environmental stressors, emphasizing the importance of integrating genetic improvements with established farming practices to ensure food security.
View Article and Find Full Text PDF

Honeybee colony survival has significantly decreased in many countries over recent decades, which has been associated with multiple factors including pathogens, parasites, resource availability, and environmental stressors, with agricultural intensification playing a key role. This study assessed the effects of Varroa destructor mite infestation, viral prevalence and load, and agrochemical concentrations in the hive matrix on colony strength in two apiaries located in different agricultural contexts (intensive vs traditional) in Northwestern Italy from March to September 2021. The results revealed that colonies in the intensively managed area exhibited lower colony strength and higher mortality rates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!