In an era marked by unprecedented anthropogenic change, marine systems are increasingly subjected to interconnected and dynamic external stressors, which profoundly reshape the behavior and resilience of marine ecological components. Nevertheless, despite widespread recognition of the significance of stressor interactions, there persist notable knowledge deficits in quantifying their interactions and the specific biological consequences that result. To bridge this crucial gap, this research detected and examined the causal relationships between five key exogenous stressors in a complex estuarine ecosystem. Furthermore, a Bayesian Hierarchical Spatio-temporal modeling framework was proposed to quantitatively evaluate the distinct, interactive, and globally sensitive effects of multiple stressors on the population dynamics of a crucial fish species: Harpadon nehereus. The results showed that interactions were detected between fisheries pressure (FP), the Pacific Decadal Oscillation index (PDO), runoff volume (RV), and sediment load (SL), with five of these interactions producing significant synergistic effects on H. nehereus biomass. The SL*PDO and RV*PDO interactions had positive synergistic effects, albeit through differing processes. The former interaction amplified the individual effects of each stressor, while the latter reversed the direction of the original impact. Indeed overall, the synergistic effect of multiple stressors was not favorable, with FP in particular posing the greatest threat to H. nehereus population. This threat was more pronounced at high SL or negative PDO phases. Therefore, local management efforts aimed at addressing multiple stressors and protecting resources should consider the findings. Additionally, although the velocity of climate change (VoCC) failed to produce significant interactions, changes in this stressor had the most sensitive impacts on the response of H. nehereus population. This research strives to enhance the dimensionality, generalizability, and flexibility of the quantification framework for marine multi-stressor interactions, aiming to foster broader research collaboration and jointly tackle the intricate pressures facing marine ecosystems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.176138 | DOI Listing |
Neurosci Biobehav Rev
January 2025
Department of Psychiatry and Psychotherapy, Philipps University Marburg, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany; Center for Mind, Brain and Behaviour, Philipps University Marburg, Hans-Meerwein-Str. 6, 35032 Marburg, Germany. Electronic address:
Recurrent psychosocial stress poses a significant health challenge, prompting research into mechanisms of successful adaptation. Physiological habituation, defined as decreased reactivity to repeated stressors, is pivotal in protecting the organism from allostatic load. Here, we systematically review and meta-analyze data from studies investigating the capacity of central stress systems to habituate when repeatedly exposed to a standardized psychosocial stressor, the Trier Social Stress Test (k=47).
View Article and Find Full Text PDFPlant Physiol Biochem
December 2024
Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Sciences, Sichuan University, Chengdu, 610041, Sichuan, China. Electronic address:
Soil heavy metal pollution is a major abiotic stressor frequently encountered by plants in conjunction with other biotic stresses like insect herbivory. Yet, it remains largely unexplored how soil metal pollution and insect herbivory act together to influence emissions of plant volatile organic compounds (VOCs), which mediate multiple ecological functions and play crucial roles in atmospheric processes. Here, we assessed the individual and combined effects of soil cadium (Cd) pollution and insect herbivory by Clostera anachoreta on VOC emissions from the seedlings of eastern cottonwood Populus deltoides, and whether these effects depend on plant sex.
View Article and Find Full Text PDFSoc Sci Med
December 2024
Division of Infectious Diseases and Global Public Health, School of Medicine, University of California, San Diego, 9500 Gilman Drive, MC 0507, La Jolla, CA, 92093, United States. Electronic address:
The lack of socio-behavioral research on stress and psychosocial experiences among research participants who undergo analytical treatment interruption (ATI) in HIV cure studies underscores a critical gap in cure science. Existing literature acknowledges mixed and potentially adverse mental health impacts of ATIs among trial participants, but empirical insights before, during, and after clinical studies are scarce. We used longitudinal in-depth interviews with 11 participants in HIV cure-related research to explore their experiences with stress, coping, and psychological well-being before, during, and after an ATI.
View Article and Find Full Text PDFFunct Plant Biol
January 2025
National Institute for Genomics and Advanced Biotechnology (NIGAB), NARC, Park Road, Islamabad 45500, Pakistan.
Environ Pollut
December 2024
Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2 Grugliasco, 10095, Turin, Italy.
Honeybee colony survival has significantly decreased in many countries over recent decades, which has been associated with multiple factors including pathogens, parasites, resource availability, and environmental stressors, with agricultural intensification playing a key role. This study assessed the effects of Varroa destructor mite infestation, viral prevalence and load, and agrochemical concentrations in the hive matrix on colony strength in two apiaries located in different agricultural contexts (intensive vs traditional) in Northwestern Italy from March to September 2021. The results revealed that colonies in the intensively managed area exhibited lower colony strength and higher mortality rates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!