A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Calotropin attenuates ischemic heart failure after myocardial infarction by modulating SIRT1/FOXD3/SERCA2a pathway. | LitMetric

Calotropin attenuates ischemic heart failure after myocardial infarction by modulating SIRT1/FOXD3/SERCA2a pathway.

Biomed Pharmacother

State Key Laboratory of Traditional Chinese Medicine Syndrome, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangdong Key Laboratory for translational Cancer research of Chinese Medicine, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China. Electronic address:

Published: October 2024

Heart failure (HF) represents the terminal stage of cardiovascular diseases, with limited therapeutic options currently available. Calotropin (CAL), a cardenolide isolated from Calotropis gigantea, exhibits a similar chemical structure and inhibitory effect on Na+/K+-ATPase to digoxin, a positive inotropic drugs used in heart failure treatment. However, the specific effect of calotropin in ischemic HF (IHF) remains unknown. The objective of this study is to assess the anti-HF effect and clarify its underlying mechanisms. The left anterior descending (LAD) artery ligation on Male Sprague-Dawley (SD) rats was used to construct ischemic HF model. Daily administration of CAL at 0.05 mg/kg significantly enhanced ejection fraction (EF) and fractional shortening (FS), while inhibiting cardiac fibrosis in IHF rats. CAL reduced the OGD/R-induced H9c2 cell injury. Furthermore, CAL upregulated the expression of SERCA2a and SIRT1. The cardioprotective effect of CAL against IHF was abrogated in the presence of the SIRT1 inhibitor EX527. Notably, we identified FOXD3 as a pivotal transcription factor mediating CAL-induced SERCA2a regulation. CAL promoted the deacetylation and nuclear translocation of FOXD3 in a SIRT1-dependent manner. In conclusion, our study explores a novel mechanism of calotropin for improving cardiac dysfunction in ischemic heart failure by regulating SIRT1/FOXD3/SERCA2a pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2024.117384DOI Listing

Publication Analysis

Top Keywords

heart failure
16
ischemic heart
8
sirt1/foxd3/serca2a pathway
8
cal
6
calotropin
4
calotropin attenuates
4
ischemic
4
attenuates ischemic
4
heart
4
failure
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!