This paper designs the sampled-data control (SDC) scheme to delve into the synchronization problem of fuzzy inertial cellular neural networks (FICNNs). Technically, the rate at which the information or activation of cellular neuronal transmission made can be described in a first-order differential model, but the network response concerning the received information may be dependent on time that can be modeled as a second-order (inertial) cellular neural network (ICNN) model. Generally, a fuzzy cellular neural network (FCNN) is a combination of fuzzy logic and a cellular neural network. Fuzzy logic models are composed of input and output templates which are in the form of a sum of product operations that help to evaluate the information transmission on a rule-basis. Hence, this study proposes a user-controlled FICNNs model with the same dynamic properties as FICNN model. In this regard, the synchronization approach is considerably effective in ensuring the dynamical properties of the drive (without control input) and response (with external control input). Theoretically, the synchronization between the drive-response can be ensured by analyzing the error model derived from the drive-response but due to nonlinearities, the Lyapunov stability theory can be utilized to derive sufficient stability conditions in terms of linear matrix inequalities (LMIs) that will guarantee the convergence of the error model onto the origin. Distinct from the existing stability conditions, this paper derives the stability conditions by involving the delay information in the form of a quadratic function with lower and upper bounds, which are evaluated through the negative determination lemma (NDL). Besides, numerical simulations that support the validation of proposed theoretical frameworks are discussed. As a direct application, the FICNN model is considered as a cryptosystem in image encryption and decryption algorithm, and the corresponding outcomes are illustrated along with security measures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neunet.2024.106671 | DOI Listing |
Alzheimers Dement
December 2024
Department of Bioengineering, University of California, Los Angeles, CA, USA, Los Angeles, CA, USA.
Background: The initiation of amyloid plaque deposition signifies a crucial stage in Alzheimer's disease (AD) progression, which often coincides with the disruption of neural circuits and cognitive decline. While the role of excitatory-inhibitory balance is increasingly recognized in AD pathophysiology, targeted therapies to modulate this balance remain underexplored. This study investigates the effect of perampanel, a selective non-competitive AMPA receptor antagonist, in modulating neurophysiological changes in hAPP-J20 transgenic Alzheimer's mice.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Afe Babalola University, Ado-Ekiti (ABUAD), Ado-Ekiti, Ekiti state, Nigeria.
Background: The impact of probiotics as gut and immunological modulator in restoring gut microbial balance and immune cells expression have generated much attention in the health sector. Its inhibitory effect on bacterial translocation and associated neural inflammatory processes has been reported. However, there is scarcity of data on its neuroprotective impact against neuroinflammation-associated neurodegeneration and memory impairment.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, NSW, Australia.
Background: Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the impairment of cognitive development and disruption of neurocognitive function. This neuropathological condition is marked by neurodegeneration, loss of neural tissue, and the formation of neurofibrillary tangles and Aβ plaques. Various studies reported the utilization of phytoconstituents like fisetin, quercetin, berberine, and xanthohumol for the treatment of AD.
View Article and Find Full Text PDFBackground: Human pluripotent stem cell (hPSC)-derived brain organoids patterned towards the cerebral cortex are valuable models of interactions occurring in vivo in cortical tissue. We and others have used these cortical organoids to model dominantly inherited FTD-tau. While these studies have provided essential insights, cortical organoid models have yet to reach their full potential.
View Article and Find Full Text PDFCurr Protoc
January 2025
Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana.
Human induced pluripotent stem cell (hiPSC)-based disease modeling can be successfully recapitulated to mimic disease characteristics across various human pathologies. Glaucoma, a progressive optic neuropathy, primarily affects the retinal ganglion cells (RGCs). While multiple groups have successfully generated RGCs from non-diseased hiPSCs, producing RGCs from glaucomatous human samples holds significant promise for understanding disease pathology by revealing patient-specific disease signatures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!