Glyphosate-based herbicides reduced overwintering population and reproduction of agrobiont spiders.

J Hazard Mater

Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China. Electronic address:

Published: November 2024

Spiders are important in ecosystem and serve as predators in the biological control of pest insects in agroecosystem, where they encounter various harsh challenges including pesticides and low temperature in winter. Glyphosate-based herbicides (GBH) are widely and frequently applied to diminish weeds, exposing spiders a disturbed habitat, especially to overwintering spiders. We conducted a study combining field surveys and lab assays, to assess the effects of a GBH on the overwintering of the agrobiont wolf spider, Pardosa pseudoannulata. The GBH significantly reduced the overall overwintering spider population by about 69 %, and reduced the number of vulnerable juveniles by about 80 %. The survivors exhibited substantial fitness costs such as reproductive dysfunctions and enhanced oxidative stress responses. We then mimicked the overwinter process in lab. We housed spiders on soil patches with and without weeds to examine whether weeds contributed to the GBH's sublethal effects. Spiders overwintered independent of weeds when GBH was not applied. When GBH was applied before or during overwintering, juvenile spiders overwintered in weedy habitats exhibited reduced survival and fecundity, and increased oxidative stress compared to their counterparts in weed-free habitats. Therefore, GBH-containing weeds contributed to the persistent adverse effects of GBH on overwintering spiders. The findings revealed the cross-talk among weeds, herbicides, low temperature, and non-target organisms. The study provides novel information on the environmental risk assessment of pesticides and rational scheduling of pesticide application.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2024.135782DOI Listing

Publication Analysis

Top Keywords

glyphosate-based herbicides
8
reduced overwintering
8
spiders
8
low temperature
8
overwintering spiders
8
effects gbh
8
gbh overwintering
8
oxidative stress
8
weeds contributed
8
spiders overwintered
8

Similar Publications

Introduction: Extensive agricultural activity results in significant exposure to pesticides, particularly glyphosate, which has been linked to immunological disorders, including apoptosis and inflammation. , a species from the Bromeliaceaefamily native to Mexico, is traditionally used in folk medicine for its medicinal properties, including anti-inflammatory effects. This research aimed to evaluate the protective effects of extract on human peripheral blood mononuclear cells (PBMCs) exposed to Faena®, a commercially available glyphosate-based herbicide.

View Article and Find Full Text PDF

Background And Purpose: Glyphosate-based herbicides, extensively utilized worldwide, raise concerns regarding potential human risks due to the detection of glyphosate (GLY) in human body fluids. This study aims to address critical knowledge gaps regarding whether GLY undergoes metabolism in humans, particularly considering the limited information available on human metabolism.

Experimental Approach: The study investigated GLY and its metabolites in eight amenity horticultural workers using proton nuclear magnetic resonance (H-NMR) data analysis.

View Article and Find Full Text PDF

Morphological and cellular effects in Boana faber tadpoles (Anura: Hylidae) exposed to atrazine-based herbicide and glyphosate-based herbicide and their mixtures.

Environ Sci Pollut Res Int

December 2024

Laboratório de Ecologia e Conservação, Universidade Federal da Fronteira Sul, Campus Erechim, RS 135 - km 72, nº 200, Erechim, RS, Brazil.

Atrazine and glyphosate are considered some of the main pollutants for aquatic ecosystems, directly and indirectly affecting non-target organisms, such as amphibians. This study aimed to evaluate the sublethal effects of different concentrations of atrazine-based herbicide (ABH) and glyphosate-based herbicide (GBH) commercial formulations, both individually and in a mixture, through toxicity tests on the larval stage of Boana faber. Tadpoles were exposed to concentrations of ABH (2, 9.

View Article and Find Full Text PDF

A biomarkers study of human skin fibroblasts exposition to glyphosate-based herbicide using an untargeted and targeted metabolomics approach.

Chemosphere

December 2024

Universidade Federal de Minas Gerais, Instituto de Ciências Exatas, Departamento de Química. Av. Antônio Carlos, 6627, Belo Horizonte, Minas Gerais, Brazil. Electronic address:

Metabolomics is a valuable tool to assess glyphosate exposure and its potential impact on human health. However, few studies have used metabolomics to evaluate human exposure to glyphosate or glyphosate-based herbicides (GBHs). In this study, an untargeted and targeted metabolomics approach was applied to human skin fibroblasts exposed to the GBH Roundup (GLYP-R).

View Article and Find Full Text PDF

Glyphosate is an acidic herbicide reported to contaminate water sources around the globe. Glyphosate alters the pH of a solution depending upon the concentration and buffering capacity of the solution in which it is present. Hence, toxicity observed in laboratory-based studies could be caused by the chemical or acidic pH if the solution is not adjusted to neutral conditions, confounding toxicity assessments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!