Background: Clinical protocols in osteoporosis treatment could not meet the requirement of increasing local bone mineral density. A local delivery system was brought in to fix this dilemma. The high-energy extracorporeal shock wave (ESW) can travel into the deep tissues with little heat loss. Hence, ESW-driven nanoparticles could be used for local treatment of osteoporosis.
Materials And Methods: An ESW-actuated nanomotor (NM) sealed into microneedles (MNs) (ESW-NM-MN) was constructed for localized osteoporosis protection. The NM was made of calcium phosphate nanoparticles with a high Young's modulus, which allows it to absorb ESW energy efficiently and convert it into kinetic energy for solid tissue penetration. Zoledronic (ZOL), as an alternative phosphorus source, forms the backbone of the NM (ZOL-NM), leading to bone targeting and ESW-mediated drug release.
Results: After the ZOL-NM is sealed into hyaluronic acid (HA)-made microneedles, the soluble MN tips could break through the stratum corneum, injecting the ZOL-NM into the skin. As soon as the ESW was applied, the ZOL-NM would absorb the ESW energy to move from the outer layer of skin into the deep tissue and be fragmented to release ZOL and Ca 2+ for anti-osteoclastogenesis and pro-osteogenesis. In vivo , the ZOL-NM increases localized bone parameters and reduces fracture risk, indicating its potential value in osteoporotic healing and other biomedical fields.
Conclusion: The ESW-mediated transdermal delivery platform (ESW-NM-MN) could be used as a new strategy to improve local bone mineral density and protect local prone-fracture areas.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11486941 | PMC |
http://dx.doi.org/10.1097/JS9.0000000000001280 | DOI Listing |
Int J Pharm X
June 2025
State Key Laboratory of Resource Insects, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Yibin Academy, Southwest University, Chongqing 400715, China.
Systemic administration of methotrexate (MTX), widely regarded as one of the most effective treatments for psoriasis, poses significant challenges due to its high toxicity, limited solubility, and potential for adverse effects. Consequently, developing a topical form of MTX may offer a safer and more effective strategy for psoriasis management. Silk fibroin (SF), a protein-based biomacromolecule, has shown considerable promise as a nanocarrier for sustained and targeted drug delivery, owing to its exceptional physicochemical and biological properties.
View Article and Find Full Text PDFMater Today Bio
February 2025
Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA, 90024, USA.
Skin-on-a-chip models provide physiologically relevant platforms for studying diseases and drug evaluation, replicating the native skin structures and functions more accurately than traditional 2D or simple 3D cultures. However, challenges remain in creating models suitable for microneedling applications and monitoring, as well as developing skin cancer models for analysis and targeted therapy. Here, we developed a human skin/skin cancer-on-a-chip platform within a microfluidic device using bioprinting/bioengineering techniques.
View Article and Find Full Text PDFRheumatoid arthritis (RA) is an autoimmune disorder that impacts around 1% of the global population. Up to 20% of people become disabled within a year, which has a severely negative impact on their health and quality of life. RA has a complicated pathogenic mechanism, which initially affects small joints and progresses to larger ones over time.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China.
Recent studies have identified microneedle (MN) arrays as promising alternatives for transdermal drug delivery. This study investigated the properties of novel staggered MN arrays design featuring two distinct heights of MNs. The staggered MN arrays were precisely fabricated via PμSL light-cured 3D printing technology.
View Article and Find Full Text PDFAAPS PharmSciTech
January 2025
Consulting, Fort Collins, Colorado, USA.
Continuously explored in pharmaceuticals, microemulsions and nanoemulsions offer drug delivery opportunities that are too significant to ignore, namely safe delivery of clinically relevant drug doses across biological membranes. Their effectiveness as drug vehicles in mucosal and (trans)dermal delivery is evident from the volume of published literature. Commonly, their ability to enhance skin permeation is attributed to dispersion size, a characteristic closely related to solubilization capacity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!