The impact of emissions controls on atmospheric nitrogen inputs to Chinese river basins highlights the urgency of ammonia abatement.

Sci Adv

State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, Key Laboratory of Plant-Soil Interactions, Ministry of Education, National Observation and Research Station of Agriculture Green Development (Quzhou, Hebei), China Agricultural University, Beijing 100193, China.

Published: September 2024

AI Article Synopsis

  • Excessive nitrogen deposition negatively impacts aquatic ecosystems globally, but the effectiveness of emissions controls on water pollution remains unclear.
  • A study on nitrogen deposition in Chinese river basins shows that despite stricter acid gas emissions regulations from 2011 to 2019, nitrogen levels in rivers still increased by 3%, mainly due to indirect deposition from land.
  • Coordinated efforts to control both acid gas and ammonia emissions could significantly reduce nitrogen input to water bodies by 2050, highlighting the crucial role of managing agricultural ammonia to protect aquatic environments.

Article Abstract

Excessive nitrogen (N) deposition affects aquatic ecosystems worldwide, but effectiveness of emissions controls and their impact on water pollution remains uncertain. In this modeling study, we assess historical and future N deposition trends in Chinese river basins and their contributions to water pollution via direct and indirect N deposition (the latter referring to transport of N to water from N deposited on land). The control of acid gas emissions (i.e., nitrogen oxides and sulfur dioxide) has had limited effectiveness in reducing total N deposition, with notable contributions from agricultural reduced N deposition. Despite increasing controls on acid gas emissions between 2011 and 2019, N inputs to rivers increased by 3%, primarily through indirect deposition. Simultaneously controlling acid gas and ammonia emissions could reduce N deposition and water inputs by 56 and 47%, respectively, by 2050 compared to 2019. Our findings underscore the importance of agricultural ammonia mitigation in protecting water bodies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11389798PMC
http://dx.doi.org/10.1126/sciadv.adp2558DOI Listing

Publication Analysis

Top Keywords

acid gas
12
emissions controls
8
chinese river
8
river basins
8
water pollution
8
indirect deposition
8
gas emissions
8
deposition
7
water
5
impact emissions
4

Similar Publications

With the growing bourbon industry in the southeastern U.S. leading to increased production of liquid distillery byproducts, there is a pressing need to explore sustainable uses for whole stillage [containing residual grain (corn, rye, malted barley) and liquid after ethanol separation] in livestock nutrition.

View Article and Find Full Text PDF

Retraction of 'CO as oxidant: an unusual light-assisted catalyst free oxidation of aldehydes to acids under mild conditions' by Shafiur Rehman Khan , , 2022, , 2208-2211, https://doi.org/10.1039/D1CC06057K.

View Article and Find Full Text PDF

This study presents the synthesis of a Cd(II) based hydrophobic three dimensional crystalline network material (CNM), [Cd(L)(LH)(bpe)], {L = {4,4'-(hexafluroisopropylidine)bis(benzoate)} and 1,2-di(4-pyridyl) ethylene (bpe)}, 1(Cd), by employing the slow-diffusion method. The three-dimensional structure of 1(Cd) was determined by single crystal X-ray diffraction and characterized by powder X-ray diffraction (PXRD), FT-IR spectroscopy and thermogravimetric analysis (TGA). Subsequently, post-synthetic modification of 1(Cd) with Cu(II) at room temperature led to the formation of isostructural 1(Cu) with partial substitution.

View Article and Find Full Text PDF

Recovering the remaining oil after primary and secondary extraction methods poses a significant challenge. Enhanced oil recovery (EOR) techniques, which involve injecting fluids into reservoirs, aim to increase recovery rates. Ionic liquids, known for their adaptability, are emerging as promising agents in EOR, improving oil displacement by reshaping fluid properties and interacting with reservoir rocks.

View Article and Find Full Text PDF

Integrated system for electrolyte recovery, product separation, and CO capture in CO reduction.

Nat Commun

January 2025

School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, South China University of Technology, Guangzhou, 510006, China.

Challenges in CO capture, CO crossover, product separation, and electrolyte recovery hinder electrocatalytic CO reduction (COR). Here, we present an integrated electrochemical recovery and separation system (ERSS) with an ion separation module (ISM) between the anode and cathode of a water electrolysis system. During ERSS operation, protons from the anolyte flow through the anodic cation exchange membrane (CEM) into the ISM, acidifying the COR effluent electrolyte.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!