A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Impact of a pilot mHealth intervention on treatment outcomes of TB patients seeking care in the private sector using Propensity Scores Matching-Evidence collated from New Delhi, India. | LitMetric

Mobile health applications called Digital Adherence Technologies (DATs), are increasingly used for improving treatment adherence among Tuberculosis patients to attain cure, and/or other chronic diseases requiring long-term and complex medication regimens. These DATs are found to be useful in resource-limited settings because of their cost efficiency in reaching out to vulnerable groups (providing pill and clinic visit reminders, relevant health information, and motivational messages) or those staying in remote or rural areas. Despite their growing ubiquity, there is very limited evidence on how DATs improve healthcare outcomes. We analyzed the uptake of DATs in an urban setting (DS-DOST, powered by Connect for LifeTM, Johnson & Johnson) among different patient groups accessing TB services in New Delhi, India, and subsequently assessed its impact in improving patient engagement and treatment outcomes. This study aims to understand the uptake patterns of a digital adherence technology and its impact in improving follow-ups and treatment outcomes among TB patients. Propensity choice modelling was used to create balanced treated and untreated patient datasets, before applying simple ordinary least square and logistic regression methods to estimate the causal impact of the intervention on the number of follow-ups made with the patient and treatment outcomes. After controlling for potential confounders, it was found that patients who installed and utilized DS-DOST application received an average of 6.4 (95% C.I. [5.32 to 7.557]) additional follow-ups, relative to those who did not utilize the application. This translates to a 58% increase. They also had a 245% higher likelihood of treatment success (Odds ratio: 3.458; 95% C.I. [1.709 to 6.996]).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11389929PMC
http://dx.doi.org/10.1371/journal.pdig.0000421DOI Listing

Publication Analysis

Top Keywords

treatment outcomes
16
outcomes patients
8
delhi india
8
digital adherence
8
impact improving
8
treatment
6
outcomes
5
impact
4
impact pilot
4
pilot mhealth
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!