Human norovirus (HuNoV) is the leading cause of foodborne illness in the developed world and a major contributor to gastroenteritis globally. Its low infectious dose and environmental persistence necessitate effective disinfection protocols. Sodium hypochlorite (NaOCl) bleach is a widely used disinfectant for controlling HuNoV transmission via contaminated fomites. This study aimed to evaluate the susceptibility of HuNoV genotypes (n = 11) from genogroups I, II, and IV to NaOCl in suspension. HuNoV was incubated for 1 and 5 min in diethyl pyrocarbonate (DEPC) treated water containing 50 ppm, 100 ppm, or 150 ppm NaOCl, buffered to maintain a pH between 7.0 and 7.5. Neutralization was achieved by a tenfold dilution into 100% fetal bovine serum. RNase pre-treatment followed by RT-qPCR was used to distinguish between infectious and non-infectious HuNoV. Statistical methods, including imputation, machine learning, and generalized linear models, were applied to process and analyze the data. Results showed that NaOCl reduced viral loads across all genotypes, though efficacy varied. Genotypes GI.1, GII.4 New Orleans, and GII.4 Sydney were the least susceptible, while GII.6 and GII.13 were the most susceptible. All NaOCl concentrations above 0 ppm were statistically indistinguishable, and exposure duration did not significantly affect HuNoV reduction, suggesting rapid inactivation at effective concentrations. For instance, some genotypes were completely inactivated within 1 min, rendering extended exposure unnecessary, while other genotypes maintained the initial concentration at both 1 and 5 min, indicating a need for longer contact times. These findings underscore the critical role of HuNoV genotype selection in testing disinfection protocols and optimizing NaOCl concentrations. Understanding HuNoV susceptibility to NaOCl bleach informs better disinfection strategies, aiding public health and food safety authorities in reducing HuNoV transmission and outbreaks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11525273PMC
http://dx.doi.org/10.1007/s12560-024-09613-3DOI Listing

Publication Analysis

Top Keywords

hunov
9
machine learning
8
human norovirus
8
sodium hypochlorite
8
disinfection protocols
8
naocl bleach
8
hunov transmission
8
naocl concentrations
8
naocl
7
genotypes
5

Similar Publications

The use of human intestinal enteroid cell cultures for detection of multiple gastroenteric viruses.

J Virol Methods

December 2024

Office of Applied Microbiology and Technology, Office of Laboratory Operations and Applied Science, Human Foods Program, Food and Drug Administration, Laurel, MD 20708, USA.

Human norovirus (HuNoV) and human astrovirus (HAstV) are viral enteric pathogens and known causative agents of acute gastroenteritis. Identifying the presence of these viruses in environmental samples such as irrigation water, or foods exposed to virus contaminated water (e.g.

View Article and Find Full Text PDF

Many viral proteins form biomolecular condensates via liquid-liquid phase separation (LLPS) to support viral replication and evade host antiviral responses, and thus, they are potential targets for designing antivirals. In the case of nonenveloped positive-sense RNA viruses, forming such condensates for viral replication is unclear and less understood. Human noroviruses (HuNoVs) are positive-sense RNA viruses that cause epidemic and sporadic gastroenteritis worldwide.

View Article and Find Full Text PDF

Human norovirus disturbs intestinal motility and transit time through its capsid proteins.

PLoS Pathog

November 2024

KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Virus-Host Interactions & Therapeutic Approaches (VITA) Research Group, Leuven, Belgium.

Article Synopsis
  • Human norovirus (HuNoV) causes over 700 million cases of gastroenteritis yearly, leading to symptoms like vomiting and diarrhea, but the mechanisms of infection are not well understood due to the absence of suitable animal models.
  • Researchers utilized a zebrafish larvae model to investigate how HuNoV affects intestinal motility and whether a specific viral protein might act as an enterotoxin.
  • The study found that HuNoV GII.4 infection increased intestinal contraction frequency and delayed food transit time in the larvae, indicating potential effects on bowel movements, with viral proteins VP1 and VP2 playing significant roles in these symptoms.
View Article and Find Full Text PDF

In Vitro Culture of Human Norovirus in the Last 20 Years.

Biomedicines

October 2024

MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China.

Human noroviruses (HuNoVs) are the main pathogens that cause acute gastroenteritis and lead to huge economic losses annually. Due to the lack of suitable culture systems, the pathogenesis of HuNoVs and the development of vaccines and drugs have progressed slowly. Although researchers have employed various methods to culture HuNoVs in vitro in the last century, problems relating to the irreducibility, low viral titer, and non-infectiousness of the progeny virus should not be ignored.

View Article and Find Full Text PDF

Transcriptional profiling of zebrafish intestines identifies macrophages as host cells for human norovirus infection.

Gut Microbes

November 2024

Department of Microbiology, Immunology and Transplantation, Rega Institute, Virus-Host Interactions & Therapeutic Approaches (VITA) Research Group, KU Leuven, Leuven, Belgium.

Human noroviruses (HuNoVs) are a major cause of diarrheal disease, yet critical aspects of their biology, including cellular tropism, remain unclear. Although research has traditionally focused on the intestinal epithelium, the hypothesis that HuNoV infects macrophages has been recurrently discussed and is investigated here using a zebrafish larval model. Through single-cell RNA sequencing of dissected zebrafish intestines, we unbiasedly identified macrophages as host cells for HuNoV replication, with all three open reading frames mapped to individual macrophages.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!