A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Active Components of Wen Fei Fu Yang Qu Tan Fang and its Molecular Targets for Chronic Obstructive Pulmonary Disease Based on Network Pharmacology and Molecular Docking. | LitMetric

To investigate the mechanism of Wen Fei Fu Yang Qu Tan Fang (WFFYQTF) in the treatment of chronic obstructive pulmonary disease (COPD) using network pharmacology and pharmacodynamics. The TCMSP database was utilized to identify the chemical components and molecular targets of WFFYQTF. Cytoscape software was employed to construct a "drug component-target" network. COPD risk genes and intersecting molecular targets of WFFYQTF were identified using GeneCards, OMIM, and DisGeNET databases. The STRING website was the place where protein-protein interaction (PPI) analysis was performed. Cytoscape topological analysis was applied for screening out key targets of WFFYQTF. GO and KEGG enrichment analyses were conducted using the DAVID database to elucidate the treatment targets of COPD with WFFYQTF. A total of 136 active components of WFFYQTF were identified, including key components such as quercetin, kaempferol, and luteolin, which were found to be particularly significant. Additionally, 412 drug targets and 7121 COPD risk genes were screened out, and 323 treatment targets of COPD with WFFYQTF were determined by Wayne analysis. Core targets identified via PPI analysis included SRC, STAT3, AKT1, HSP90AA1, and JUN. Pathways such as the hypoxia responce, inflammatory response, PI3K/AKT pathway, TH17 pathway and MAPK pathway were obtained with GO and KEGG enrichment analyses. Molecular docking results suggested that quercetin could be soundly bound to STAT3 and AKT1, and kaempferol to SRC. WFFYQTF can effectively impede COPD progression through the coordinated action of multiple components, targets, and pathways during treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12013-024-01498-0DOI Listing

Publication Analysis

Top Keywords

molecular targets
12
targets wffyqtf
12
targets
9
active components
8
wen fei
8
fei yang
8
yang tan
8
tan fang
8
chronic obstructive
8
obstructive pulmonary
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!