Unlocking Lignin's Potential: Engineered Bacterial Laccases to Produce Biologically Active Molecules.

ChemSusChem

Universidade Nova de Lisboa Instituto de Tecnologia Quimica e Biologica, ITQB-NOVA, Av da Republica, 2580-157, Oeiras, PORTUGAL.

Published: September 2024

Laccases are biocatalysts with immense potential in lignocellulose biorefineries to valorize emerging lignin monomers for sustainable chemicals. Despite reduced costs over the past two decades, enzymes remain a major expense in biorefining. Protein engineering can enhance enzyme properties and lower costs further. In this study, we used enzyme engineering tools to improve > 400-fold the catalytic efficiency (kcat/Km) of a hyperthermostable bacterial laccase for 2,6-dimethoxyphenol, a lignin-related phenolic compound. Furthermore, this evolved variant showed improved activity at neutral to alkaline pH for hydroxycinnamyl alcohols, hydrocinnamic acids, phenylpropanoid and vanillyl derivatives. We optimized conditions for the synthesis of syringaresinol, dehydrodiconiferyl alcohol, thomasidioic acid, biseugenol, dehydrodiisoeugenol, and diapocynin, detailing the pH, catalyst concentration, reaction time, temperature, and oxygenation of the reaction mixtures. Our biocatalytic system offers several advantages, including being free of organic solvents, achieving faster reaction times, using lower amounts of enzymes and delivering excellent yields (up to 100%) than reported methods. Additionally, we provide insights that advance the state-of-the-art in lignin combinatory chemistry. This progress marks a significant step forward in valorizing the lignin chemicals platform, enabling high yields of dimeric compounds with structural scaffolds that can be exploited in various biotechnological areas, such as medicinal chemistry and polymer synthesis.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cssc.202401386DOI Listing

Publication Analysis

Top Keywords

unlocking lignin's
4
lignin's potential
4
potential engineered
4
engineered bacterial
4
bacterial laccases
4
laccases produce
4
produce biologically
4
biologically active
4
active molecules
4
molecules laccases
4

Similar Publications

Lignocellulose biosorbents: Unlocking the potential for sustainable environmental cleanup.

Int J Biol Macromol

January 2025

Amity Institute of Pharmacy, Amity University Haryana, Amity Education Valley, Panchgaon, Manesar, Gurugram, Haryana 122413, India. Electronic address:

Climate change, the overconsumption of fossil fuels, and rapid population and economic growth have collectively driven a growing emphasis on environmental sustainability and the need for effective resource management. Chemicals or materials not currently regulated are known as contaminants of emergent concern (CECs). Nevertheless, wastewater is thought to be its main source, and worries about its probable presence in the environment are growing due to its potential damage to human and environmental health.

View Article and Find Full Text PDF

Lignin, an energy-rich and adaptable polymer comprising phenylpropanoid monomers utilized by plants for structural reinforcement, water conveyance, and defense mechanisms, ranks as the planet's second most prevalent biopolymer, after cellulose. Despite its prevalence, lignin is frequently underused in the process of converting biomass into fuels and chemicals. Instead, it is commonly incinerated for industrial heat due to its intricate composition and resistance to decomposition, presenting obstacles for targeted valorization.

View Article and Find Full Text PDF

Silver-Catalyzed Aqueous Electrochemical Valorization of Soda Lignin into Aliphatics and Phenolics.

Polymers (Basel)

November 2024

Faculty of Mathematics and Natural Sciences, Chair of Inorganic Chemistry, University of Wuppertal, Gaussstraße 20, 42119 Wuppertal, Germany.

Transitioning from crude oil to renewable sources of carbon-based chemicals is critical for advancing sustainable development. Lignin, a wood-derived biomacromolecule, holds great potential as a renewable feedstock, but efficient depolymerization and dearomatization methods are required to fully unlock its potential. In this investigation, we present a silver-catalyzed aqueous electrocatalytic method for the selective depolymerization and partial dearomatization of soda lignin under mild, ambient conditions.

View Article and Find Full Text PDF

This study examines a boreal peatland (the Sagnes peatland, Fanay, Limousin, France) with a depth of 1 m. This peatland is currently in the late stages of organic deposition, as evidenced by the growth of species, along with mosses, in the uppermost level. To gain molecular insights, we conducted an analysis of the lignin and polyphenolic counterparts using HMDS (hexamethyldisilazane) thermochemolysis, enabling the identification of lignin degradation proxies.

View Article and Find Full Text PDF

The transformation of renewable feedstocks into aromatic chemicals holds immense potential for advancing a green, low-carbon economy and fostering sustainable development. Herein, we present a novel approach for the conversion of isoeugenol, a renewable lignin derivative, into the valuable flavoring agent vanillin, utilizing ozone as an environmentally benign oxidant. The process optimization was significantly enhanced by the integration of Attenuated Total Reflectance Infrared (ATR-IR) monitoring.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!