Advancing the Prediction of MS/MS Spectra Using Machine Learning.

J Am Soc Mass Spectrom

Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States.

Published: October 2024

Tandem mass spectrometry (MS/MS) is an important tool for the identification of small molecules and metabolites where resultant spectra are most commonly identified by matching them with spectra in MS/MS reference libraries. While popular, this strategy is limited by the contents of existing reference libraries. In response to this limitation, various methods are being developed for the generation of spectra to augment existing libraries. Recently, machine learning and deep learning techniques have been applied to predict spectra with greater speed and accuracy. Here, we investigate the challenges these algorithms face in achieving fast and accurate predictions on a wide range of small molecules. The challenges are often amplified by the use of generic machine learning benchmarking tactics, which lead to misleading accuracy scores. Curating data sets, only predicting spectra for sufficiently high collision energies, and working more closely with experimental mass spectrometrists are recommended strategies to improve overall prediction accuracy in this nuanced field.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jasms.4c00154DOI Listing

Publication Analysis

Top Keywords

machine learning
12
small molecules
8
reference libraries
8
spectra
6
advancing prediction
4
prediction ms/ms
4
ms/ms spectra
4
spectra machine
4
learning
4
learning tandem
4

Similar Publications

Understanding clinical trajectories of sepsis patients is crucial for prognostication, resource planning, and to inform digital twin models of critical illness. This study aims to identify common clinical trajectories based on dynamic assessment of cardiorespiratory support using a validated electronic health record data that covers retrospective cohort of 19,177 patients with sepsis admitted to ICUs of Mayo Clinic Hospitals over eight-year period. Patient trajectories were modeled from ICU admission up to 14 days using an unsupervised machine learning two-stage clustering method based on cardiorespiratory support in ICU and hospital discharge status.

View Article and Find Full Text PDF

Introduction: Coagulopathy following traumatic injury impairs stable blood clot formation and exacerbates mortality from hemorrhage. Understanding how these alterations impact blood clot stability is critical to improving resuscitation. Furthermore, the incorporation of machine learning algorithms to assess clinical markers, coagulation assays and biochemical assays allows us to define the contributions of these factors to mortality.

View Article and Find Full Text PDF

Background: Environmental change in coastal areas can drive marine bacteria and resulting infections, such as those caused by , with both foodborne and nonfoodborne exposure routes and high mortality. Although ecological drivers of in the environment have been well-characterized, fewer models have been able to apply this to human infection risk due to limited surveillance.

Objectives: The Cholera and Other Illness Surveillance (COVIS) system database has reported infections in the United States since 1988, offering a unique opportunity to both explore the forecasting capabilities machine learning could provide and to characterize complex environmental drivers of infections.

View Article and Find Full Text PDF

Phonon dynamics and transport determine how heat is utilized and dissipated in materials. In 2D systems for optoelectronics and thermoelectrics, the impact of nanoscale material structure on phonon propagation is central to controlling thermal conduction. Here, we directly observe in-plane coherent acoustic phonon propagation in black phosphorus (BP) using ultrafast electron microscopy.

View Article and Find Full Text PDF

[This retracts the article DOI: 10.1007/s00500-022-06818-1.].

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!