The agricultural sector is one of the most polluting economic activities, contributing significantly to greenhouse gas (GHGs) emissions. Brazil is one of the largest agricultural producers worldwide and plays a major role in reducing the environmental impact of this sector. Here, we aimed to determine the impact of the agricultural sector, with special attention to production, prices, and trade openness, on the short- and long-term GHGs emissions of Brazilian agriculture. Employing data from 1974 to 2019, we tested the cointegration of variables and compared the determinants of GHG emissions using Autoregressive Distributed Lag (ARDL) and Vector Error Correction Model (VECM) methods. Our results show a long-term equilibrium trend for Brazilian agricultural GHGs emissions, a result that correlates with emerging environmental compliance, and society demands the adoption of sustainable technologies, processes, and policies. In the short run, both cattle herds and Agricultural Added Value to GDP per capita showed an expected positive and significant contribution to GHGs emissions, while agricultural crop area demonstrated an inverse relationship. The trade openness index confirmed that foreign trade plays an important role in reducing GHGs emissions. The price index is not significant in our models. Both the private and public sectors have important roles in sustainable agriculture, especially in increasing system efficiency through the adoption of management and technologies that reduce GHG emissions levels.

Download full-text PDF

Source
http://dx.doi.org/10.1590/0001-3765202420240345DOI Listing

Publication Analysis

Top Keywords

ghgs emissions
20
agricultural sector
12
greenhouse gas
8
emissions
8
emissions brazilian
8
brazilian agricultural
8
role reducing
8
trade openness
8
ghg emissions
8
agricultural
7

Similar Publications

Waste and Greenhouse Gas Emissions Produced from Ophthalmic Surgeries: A Scoping Review.

Int J Environ Res Public Health

December 2024

Department of Ophthalmology & Visual Sciences, Montefiore Medical Center, Albert Einstein College of Medicine, New York, NY 10461, USA.

(1) Background: Healthcare is a major contributor to global greenhouse gas (GHG) emissions, especially within the surgical suite. Ophthalmologists play a role, since they frequently perform high-volume procedures, such as cataract surgery. This review aims to summarize the current literature on surgical waste and GHG emissions in ophthalmology and proposes a framework to standardize future studies.

View Article and Find Full Text PDF

Tidal-driven NO emission is a stronger resister than CH to offset annual carbon sequestration in mangrove ecosystems.

Sci Total Environ

January 2025

State Key Laboratory of Marine Resource Utilization in South China Sea, School of Ecology, School of Marine Science and Engineering, Hainan University, Haikou, Hainan, China; Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, Hainan, China. Electronic address:

The mangrove ecosystems store a significant amount of "blue carbon" to mitigate global climate change, but also serve as hotspots for greenhouse gases (GHGs: CO, CH and NO) production. The CH and NO emissions offset mangrove carbon benefits, however, the extent of this effect remains inadequately quantified. By applying the 36 h time-series observations and mapping cruises, here we investigated the spatial and temporal distribution of GHGs and their fluxes in Dongzhaigang (DZG) bay, the largest mangrove ecosystem in China, at tidal and monthly scales.

View Article and Find Full Text PDF

A new insight on simultaneous water purification and greenhouse gas reduction by constructing sulfur-siderite driven autotrophic denitrification pathways in constructed wetlands.

Water Res

January 2025

College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China; Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, Shandong, China. Electronic address:

Sulfur-siderite driven autotrophic denitrification (SSAD) has received increasing attention for nutrient removal in constructed wetlands (CWs). Nevertheless, its effectiveness in simultaneous water purification and greenhouse gases (GHGs) reduction remains obscure. In this study, three vertical flow constructed wetlands (VFCWs), filled with quartz sand (CCW), sulfur (S-CW), and sulfur-siderite mixed substrates (SS-CW), were constructed to investigate the underlying mechanisms of SSAD on water purification enhancement and GHGs reduction.

View Article and Find Full Text PDF

Untangling the impacts of bacterial community on carbon dioxide and nitrous oxide across a drinking water reservoir.

Environ Res

January 2025

College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, PR China. Electronic address:

Reservoirs represent a critical component of greenhouse gas (GHG) emissions, yet the intricacies of how biotic and abiotic factors influence GHG dynamics within reservoirs remain largely unexplored. Herein, we investigated the spatiotemporal patterns of CO and NO emissions and the underlying factors in the Danjiangkou Reservoir, Asia's largest artificial freshwater reservoir. We found that this reservoir was a significant source of GHGs to the atmosphere, with peak CO emissions observed in autumn (1544.

View Article and Find Full Text PDF

The role of biochar in reducing greenhouse gas (GHG) emissions and improving soil health is a topic of extensive research, yet its effects remain debated. Conflicting evidence exists regarding biochar's impact on soil microbial-mediated emissions with respect to different GHGs. This study systematically examines these divergent perspectives, aiming to investigate biochar's influence on GHG emissions and soil health in agricultural soils.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!