Nucleotide excision repair of aflatoxin-induced DNA damage within the 3D human genome organization.

Nucleic Acids Res

Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, USA.

Published: October 2024

Aflatoxin B1 (AFB1), a potent mycotoxin, is one of the environmental risk factors that cause liver cancer. In the liver, the bioactivated AFB1 intercalates into the DNA double helix to form a bulky DNA adduct which will lead to mutation if left unrepaired. Here, we adapted the tXR-seq method to measure the nucleotide excision repair of AFB1-induced DNA adducts at single-nucleotide resolution on a genome-wide scale, and compared it with repair data obtained from conventional UV-damage XR-seq. Our results showed that transcription-coupled repair plays a major role in the damage removal process. We further analyzed the distribution of nucleotide excision repair sites for AFB1-induced DNA adducts within the 3D human genome organization. Our analysis revealed a heterogeneous AFB1-dG repair across four different organization levels, including chromosome territories, A/B compartments, TADs, and chromatin loops. We found that chromosomes positioned closer to the nuclear center and regions within A compartments have higher levels of nucleotide excision repair. Notably, we observed high repair activity around both TAD boundaries and loop anchors. These findings provide insights into the complex interplay between AFB1-induced DNA damage repair, transcription, and 3D genome organization, shedding light on the mechanisms underlying AFB1-induced mutagenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11514448PMC
http://dx.doi.org/10.1093/nar/gkae755DOI Listing

Publication Analysis

Top Keywords

nucleotide excision
16
excision repair
16
genome organization
12
afb1-induced dna
12
repair
9
dna damage
8
human genome
8
dna adducts
8
dna
6
nucleotide
4

Similar Publications

Altered DNA dynamics at lesion sites are implicated in how DNA repair proteins sense damage within genomic DNA. Using laser temperature-jump (T-jump) spectroscopy combined with cytosine-analog Förster Resonance Energy Transfer (FRET) probes that sense local DNA conformations, we measured the intrinsic dynamics of DNA containing 3 base-pair mismatches recognized in vitro by Rad4 (yeast ortholog of XPC). Rad4/XPC recognizes diverse lesions from environmental mutagens and initiates nucleotide excision repair.

View Article and Find Full Text PDF

Ionizing radiation induces various types of DNA damage, and the reparability and lethal effects of DNA damage differ depending on its spatial density. Elucidating the structure of radiation-induced clustered DNA damage and its repair processes will enhance our understanding of the lethal impact of ionizing radiation and advance progress toward precise therapeutics. Previously, we developed a method to directly visualize DNA damage using atomic force microscopy (AFM) and classified clustered DNA damage into simple base damage clusters (BDCs), complex BDCs and complex double-strand breaks (DSBs).

View Article and Find Full Text PDF

Transcriptomics and Proteomics Analysis of the Liver of Knockout Mice.

Int J Mol Sci

January 2025

State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China.

RAD52 plays crucial roles in several aspects of mammalian cells, including DNA double-strand breaks repair, viral infection, cancer development, and antibody class switching. To comprehensively elucidate the role of RAD52 in maintaining genome stability and uncover additional functions of RAD52 in mammals, we performed the transcriptomics and proteomics analysis of the liver of knockout mice. Transcriptomics analysis reveals overexpression of mitochondrial genes in the liver of knockout (RAD52KO) mice.

View Article and Find Full Text PDF

Beyond Nucleotide Excision Repair: The Importance of XPF in Base Excision Repair and Its Impact on Cancer, Inflammation, and Aging.

Int J Mol Sci

December 2024

Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA.

DNA repair involves various intricate pathways that work together to maintain genome integrity. XPF (ERCC4) is a structural endonuclease that forms a heterodimer with ERCC1 that is critical in both single-strand break repair (SSBR) and double-strand break repair (DSBR). Although the mechanistic function of ERCC1/XPF has been established in nucleotide excision repair (NER), its role in long-patch base excision repair (BER) has recently been discovered through the 5'-Gap pathway.

View Article and Find Full Text PDF

Unveiling Secondary Mutations in Blended Phenotypes: Dual ERCC4 and OTOA Pathogenic Variants Through WES Analysis.

Int J Mol Sci

December 2024

Department of Biomedical and Biotechnological Sciences, Section of Clinical Biochemistry and Medical Genetics, University of Catania, via Santa Sofia, 95123 Catania, Italy.

This study describes two siblings from consanguineous parents who exhibit intellectual disability, microcephaly, photosensitivity, bilateral sensorineural hearing loss, numerous freckles, and other clinical features that suggest a potential disruption of the nucleotide excision repair (NER) pathway. Whole exome sequencing (WES) identified a novel homozygous missense variant in the gene, which was predicted to be pathogenic. However, a subsequent peculiar audiometric finding prompted further investigation, revealing a homozygous deletion in the gene linked to neurosensorial hearing loss.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!