Symmetry-controlled SrRuO/SrTiO/SrRuOmagnetic tunnel junctions: spin polarization and its relevance to tunneling magnetoresistance.

J Phys Condens Matter

Department of Physics and Astronomy & Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, NE 68588, United States of America.

Published: September 2024

Magnetic tunnel junctions (MTJs), that consist of two ferromagnetic electrodes separated by an insulating barrier layer, have non-trivial fundamental properties associated with spin-dependent tunneling. Especially interesting are fully crystalline MTJs where spin-dependent tunneling is controlled by the symmetry group of wave vector. In this work, using first-principles quantum-transport calculations, we explore spin-dependent tunneling in fully crystalline SrRuO/SrTiO/SrRuO(001) MTJs and predict tunneling magnetoresistance (TMR) of nearly 3000%. We demonstrate that this giant TMR effect is driven by symmetry matching (mismatching) of the incoming and outcoming Bloch states in the SrRuO(001) electrodes and evanescent states in the SrTiO(001) barrier. We argue that under the conditions of symmetry-controlled transport, spin polarization, whatever definition is used, is not a relevant measure of spin-dependent tunneling. In the presence of diffuse scattering, however, e.g. due to localized states in the band gap of the tunnel barrier, symmetry matching is no longer valid and TMR in SrRuO/SrTiO/SrRuO(001) MTJs is strongly reduced. Under these conditions, the spin polarization of the interface transmission function becomes a valid measure of TMR. These results provide an important insight into understanding and optimizing TMR in all-oxide MTJs.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-648X/ad765fDOI Listing

Publication Analysis

Top Keywords

spin-dependent tunneling
16
spin polarization
12
tunnel junctions
8
tunneling magnetoresistance
8
fully crystalline
8
srruo/srtio/srruo001 mtjs
8
symmetry matching
8
tunneling
6
mtjs
5
tmr
5

Similar Publications

Pseudotunnel Magnetoresistance in Twisted van der Waals FeGeTe Homojunctions.

Adv Mater

January 2025

Faculty of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Sagamihara, Kanagawa, 252-5258, Japan.

Twistronics, a novel engineering approach involving the alignment of van der Waals (vdW) integrated two-dimensional materials at specific angles, has recently attracted significant attention. Novel nontrivial phenomena have been demonstrated in twisted vdW junctions (the so-called magic angle), such as unconventional superconductivity, topological phases, and magnetism. However, there have been only few reports on integrated vdW layers with large twist angles θ, such as twisted interfacial Josephson junctions using high-temperature superconductors.

View Article and Find Full Text PDF

Exchange-Biased Fe/FeF Nanocomposites: Unveiling the Structural Insights into Spin-Dependent Tunnel Transport.

ACS Appl Mater Interfaces

January 2025

Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-8578, Japan.

Spin-dependent charge tunneling transport of magnetic nanocomposites under alternating current or direct current has revolutionized the understanding of the quantum-mechanical phenomenon in complex granular solids. The tunnel magnetodielectric (TMD) and tunnel magnetoresistance (TMR) effects are two critical functionalities in this context, where dielectric permittivity and electrical resistance, respectively, change in response to an applied magnetic field due to charge tunneling. However, the structural correlation between TMD and TMR, as well as the mechanisms, remains poorly understood, largely due to the challenges in directly characterizing nanoscale intergranular interactions.

View Article and Find Full Text PDF

Spintronic devices and applications using noncollinear chiral antiferromagnets.

Nanoscale Horiz

December 2024

Electrical and Computer Engineering, The Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, USA.

Antiferromagnetic materials have several unique properties, such as a vanishingly small net magnetization, which generates weak dipolar fields and makes them robust against perturbation from external magnetic fields and rapid magnetization dynamics, as dictated by the geometric mean of their exchange and anisotropy energies. However, experimental and theoretical techniques to detect and manipulate the antiferromagnetic order in a fully electrical manner must be developed to enable advanced spintronic devices with antiferromagnets as their active spin-dependent elements. Among the various antiferromagnetic materials, conducting antiferromagnets offer high electrical and thermal conductivities and strong electron-spin-phonon interactions.

View Article and Find Full Text PDF

Utilizing simulations, we study the spin-dependent electronic transport characteristics within FeGeTe-based van der Waals heterostructures. The electronic density of states for both free-standing and device-configured FeGeTe (F4GT) confirms its ferromagnetic metallic nature and reveals a weak interface interaction between F4GT and PtTe electrodes, enabling efficient spin filtering. The ballistic transport through a double-layer F4GT with a ferromagnetic configuration sandwiched between two PtTe electrodes is predicted to exhibit an impressive spin polarization of 97% with spin-up electrons exhibiting higher transmission probability than spin-down electrons.

View Article and Find Full Text PDF

Half-metallic Co-based full Heusler alloys have captured considerable attention of researchers in the realm of spintronic applications, owing to their remarkable characteristics such as exceptionally high spin polarization at the Fermi level, ultra-low Gilbert damping, and a high Curie temperature. In this comprehensive study, employing the density functional theory, we delve into the electronic stability and ballistic spin transport properties of a magnetic tunneling junction (MTJ) comprising a CoMnSb/HfIrSb interface. An in-depth investigation of -dependent spin transmissions uncovers the occurrence of coherent tunneling for the Mn-Mn/Ir interface, particularly when a spacer layer beyond a certain thickness is employed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!