The structure of ionic liquids (ILs) has an influence on their physiochemical properties, determining their performance as self-assembly media. In this study, we focus on the anion effect of aprotic ionic liquids (AILs). The aggregation behaviours of the cationic surfactant 1-hexadecyl-3-methylimidazolium bromide (CmimBr) have been investigated in the imidazolium AILs with the 1-ethyl-3-methyl imidazolium cation and different anions, including nitrate, ethylsulfate, bis(trifluoromethylsulfonyl) imide and tetrafluoroborate. Surface adsorption parameters of CmimBr were determined using surface tension measurements, and the critical micellization concentration values in AILs vary for their different cohesive energy. The micellar and lamellar lyotropic liquid crystal phases emerge with the increase of CmimBr concentrations. The structure and properties of aggregates were determined using small angle X-ray scattering, polarized optical microscopy, rheology and differential scanning calorimetry. The anion effects of AILs on the phase behaviours and structure and properties of aggregates were analysed and discussed. The lamellar lyotropic liquid crystals have shown good conductivity, as confirmed by electrochemical impedance spectroscopy characterization. Our results enhance the understanding of the structure effect of ILs as self-assembly media and contribute to the design of tailorable solvents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4sm00699b | DOI Listing |
RSC Adv
January 2025
Department of Chemistry, Institute of Technical Education and Research, Siksha 'O' Anusandhan Deemed to Be University Bhubaneswar-751030 Odisha India
The widespread use of neodymium-iron-boron (NdFeB) magnets has raised concerns about the environmental impact of their disposal, prompting the need for sustainable recycling strategies. Traditional solvents used in recycling are toxic and flammable, making them risky to use. Ionic liquids are safer and greener options with low vapor pressure, high stability, and less flammability.
View Article and Find Full Text PDFChemistry
January 2025
Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, 119991, Moscow, RUSSIAN FEDERATION.
Palladium catalysts form a cornerstone of modern chemistry with upmost scientific and industrial impact. Bulk palladium metal itself is chemically inert, and a sequence of chemical transformations has to be utilized to convert the metal into Pd pre-catalyst covered by ligands. However, the "cocktail" of catalysis concept discovered recently has shown that Pd systems can efficiently operate in catalysis without the necessity of a complicated and expensive pre-installed ligand environment.
View Article and Find Full Text PDFChemSusChem
January 2025
Bedimensional Spa, Lungotorrente Secca, 3d, 16163, Genova, ITALY.
The design of interfaces between nanostructured electrodes and advanced electrolytes is critical for realizing advanced electrochemical double-layer capacitors (EDLCs) that combine high charge-storage capacity, high-rate capability, and enhanced safety. Toward this goal, this work presents a novel and sustainable approach for fabricating ionogel-based electrodes using a renewed slurry casting method, in which the solvent is replaced by the ionic liquid (IL), namely 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide (EMIFSI). This method avoids time-consuming and costly electrolyte-filling steps by integrating the IL directly into the electrode during slurry preparation, while improving the rate capability of EDLCs based on non-flammable ILs.
View Article and Find Full Text PDFDes Monomers Polym
January 2025
Leibniz-Institut für Polymerforschung Dresden e.V, Dresden, Germany.
Enhancing both ionic conductivity and mechanical robustness remains a major challenge in designing solid-state electrolytes for lithium batteries. This work presents a novel approach in designing mechanically robust and highly conductive solid-state electrolytes, which involves ionic liquid-based cross-linked polymer networks incorporating polymeric ionic liquids (PILs). First, linear PILs with different side groups were synthesized for optimizing the structure.
View Article and Find Full Text PDFACS Mater Au
January 2025
Department of Electrical and Electronic Engineering, Kyushu Institute of Technology, 1-1 Sensuicho, Tobataku, Kitakyushu, Fukuoka 804-8550, Japan.
Ionic gels (IGs), ionic liquids (ILs) dispersed in polymers, exhibit extremely low vapor pressure, electrochemical and thermal stability, and excellent mechanical characteristics; therefore, they are used for fabricating stretchable sensors, electrochemical transistors, and energy storage devices. Although such characteristics are promising for flexible and stretchable electronics, the mechanical stress-induced ruptured covalent bonds forming polymer networks cannot recover owing to the irreversible interaction between the bonds. Physical cross-linking via noncovalent bonds enables the interaction of polymers and ILs to form supramolecular IGs (SIGs), which exhibit favorable characteristics for wearable devices that conventional IGs with noncovalent bonds cannot achieve.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!