The application of patch methods for repairing abdominal wall wounds presents a variety of challenges, such as adhesion and limited mobility due to inadequate mechanical strength and nonabsorbable materials. Among these complications, postoperative visceral adhesion and wound infection are particularly serious. In this study, a bilayered composite patch with a gelatin methacryloyl (GelMA)/sodium alginate (SA)-vancomycin (Van)@polycaprolactone (PCL) (GelMA/SA-Van@PCL) antibacterial layer was prepared coaxial 3D printing and a polycaprolactone (PCL)-silicon dioxide (SiO) antiadhesive layer (PCL-SiO) was prepared electrospinning and electrostatic spray for hernia repair. The evaluation of the physicochemical properties revealed that the composite patch had outstanding tensile properties (16 N cm), excellent swelling (swelling rate of 243.81 ± 12.52%) and degradation (degradation rate of 53.14 ± 3.02%) properties. Furthermore, the composite patch containing the antibiotic Van exhibited good antibacterial and long-term drug release properties. Both and experiments indicated that the composite patch displayed outstanding biocompatibility and antiadhesive properties and could prevent postoperative infections. In summary, the bilayered composite patch can effectively prevent postoperative complications while promoting tissue growth and repair and holds significant application potential in hernia repair.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4tb01543f | DOI Listing |
AAPS PharmSciTech
January 2025
School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, Georgia, 30332-0100, U.S.A..
Delivery of therapies into skin is attractive for medical indications including vaccination and treatment of dermatoses but is highly constrained by the stratum corneum barrier. Microneedle (MN) patches have emerged as a promising technology to enable non-invasive, intuitive, and low-cost skin delivery. When combined with biodegradable polymer formulations, MN patches can further enable controlled-release drug delivery without injection.
View Article and Find Full Text PDFSci Rep
January 2025
College of Computer Sciences, Anhui University, Hefei, 230039, China.
Decoding the semantic categories of complex sceneries is fundamental to numerous artificial intelligence (AI) infrastructures. This work presents an advanced selection of multi-channel perceptual visual features for recognizing scenic images with elaborate spatial structures, focusing on developing a deep hierarchical model dedicated to learning human gaze behavior. Utilizing the BING objectness measure, we efficiently localize objects or their details across varying scales within scenes.
View Article and Find Full Text PDFSci Rep
January 2025
Medical Physics, University of Wisconsin School of Medicine and Public Health (UW-SMPH), Madison, USA.
Carotid plaques-the buildup of cholesterol, calcium, cellular debris, and fibrous tissues in carotid arteries-can rupture, release microemboli into the cerebral vasculature and cause strokes. The likelihood of a plaque rupturing is thought to be associated with its composition (i.e.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Division of Colorectal Surgery, Department of Surgery, Tehran University of medical sciences, Tehran, Iran.
Adv Sci (Weinh)
December 2024
MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
Corneal blindness is a significant reason for visual impairment globally. Researchers have been investigating several methods for corneal regeneration in order to cure these patients. Biomaterials are favored due to their biocompatibility and capacity to promote cell adhesion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!