Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Patients with oligometastatic cancer (OMC) exhibit better response to local therapeutic interventions and a more treatable tendency than those with polymetastatic cancers. However, studies on OMC are limited and lack effective integration for systematic comparison and personalized application, and the diagnosis and precise treatment of OMC remain controversial. The application of large language models in medicine remains challenging because of the requirement of high-quality medical data. Moreover, these models must be enhanced using precise domain-specific knowledge. Therefore, we developed the OligoM-Cancer platform (http://oligo.sysbio.org.cn), pioneering knowledge curation that depicts various aspects of oligometastases spectrum, including markers, diagnosis, prognosis, and therapy choices. A user-friendly website was developed using HTML, FLASK, MySQL, Bootstrap, Echarts, and JavaScript. This platform encompasses comprehensive knowledge and evidence of phenotypes and their associated factors. With 4059 items of literature retrieved, OligoM-Cancer includes 1345 valid publications and 393 OMC-associated factors. Additionally, the included clinical assistance tools enhance the interpretability and credibility of clinical translational practice. OligoM-Cancer facilitates knowledge-guided modeling for deep phenotyping of OMC and potentially assists large language models in supporting specialised oligometastasis applications, thereby enhancing their generalization and reliability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11385025 | PMC |
http://dx.doi.org/10.1016/j.csbj.2024.08.015 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!