This paper proposed a new method for maximum power point tracking in photovoltaic power generation systems by combining super-twisting sliding mode control and active disturbance rejection method. An incremental guidance method is used to find the point of maximum power. The non-linear extended state observer is applied to estimate the unmodeled dynamics and external disturbance. The ADRC based on a super-twisting sliding mode is designed to bring the state variables to the desired state. In the next step, the stability of NESO and ADRC are theoretically proved. Finally, the simulation results have been compared with the results of the PI controller, classical sliding mode control, and terminal sliding mode control (TSMC) presented in other articles. The results show the effectiveness and superiority of the proposed method. Also, to check the performance of the proposal method in real-time, real-time results have been compared with non-real-time results. The results obtained from the real-time and non-real-time simulations exhibited a minimal difference. This fact indicates the high accuracy of the modeling and simulations performed. Indeed, the mathematical models and non-real-time simulations have been able to accurately mimic the actual behavior of the photovoltaic system under various operating conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11386285PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e36428DOI Listing

Publication Analysis

Top Keywords

sliding mode
16
maximum power
12
mode control
12
power point
8
point tracking
8
photovoltaic power
8
power generation
8
non-linear extended
8
extended state
8
state observer
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!