AI Article Synopsis

  • Bone resorption by osteoclasts is vital for bone remodeling, which helps maintain bone health and repair injuries, and a specific group of bone marrow cells called marrow adipogenic lineage precursors (MALPs) produces a protein called RANKL that stimulates this process.
  • Research used various techniques to show that while MALPs and other mesenchymal cells are present in the bone, RANKL production is primarily limited to MALPs.
  • RANKL deficiency in MALPs led to increased trabecular bone mass and reduced bone resorption in mice, indicating that MALPs and their RANKL production are crucial for maintaining bone strength, especially after events like menopause or injury.

Article Abstract

Bone resorption by osteoclasts is a critical step in bone remodeling, a process important for maintaining bone homeostasis and repairing injured bone. We previously identified a bone marrow mesenchymal subpopulation, marrow adipogenic lineage precursors (MALPs), and showed that its production of RANKL stimulates bone resorption in young mice using . To exclude developmental defects and to investigate the role of MALPs-derived RANKL in adult bone, we generated inducible reporter mice () and RANKL deficient mice (). Single cell-RNA sequencing data analysis, lineage tracing, and in situ hybridization revealed that Adipoq+ cells contain not only MALPs but also late mesenchymal progenitors capable of osteogenic differentiation. However, mRNA was only detected in MALPs, but not in osteogenic cells. RANKL deficiency in MALPs induced at 3 months of age rapidly increased trabecular bone mass in long bones as well as vertebrae within 1 month due to diminished bone resorption but had no effect on the cortical bone. Ovariectomy (OVX) induced trabecular bone loss at both sites. RANKL depletion either before OVX or at 6 weeks post OVX protected and restored trabecular bone mass. Furthermore, bone healing after drill-hole injury was delayed in mice. Together, our findings demonstrate that MALPs play a dominant role in controlling trabecular bone resorption and that RANKL from MALPs is essential for trabecular bone turnover in adult bone homeostasis, postmenopausal bone loss, and injury repair.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11384808PMC
http://dx.doi.org/10.21203/rs.3.rs-4809633/v1DOI Listing

Publication Analysis

Top Keywords

bone resorption
20
trabecular bone
20
bone
19
bone marrow
8
marrow adipogenic
8
adipogenic lineage
8
lineage precursors
8
bone homeostasis
8
adult bone
8
bone mass
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!