AI Article Synopsis

  • * The microspheres combine a special polymer with a cyclic peptide to create a dual-network hydrogel that responds to changes in the OA environment, allowing for targeted drug release when inflammation increases.
  • * In tests on rats, the therapy demonstrated a synergistic effect, indicating it could provide more benefits than traditional treatments for managing OA symptoms and protecting cartilage tissue.

Article Abstract

Osteoarthritis (OA) is a common age-related degenerative disease characterized by changes in the local tissue environment as inflammation progresses. Inspired by the wind-dispersal mechanism of dandelion seeds, this study develops responsive biomimetic microsphere-drug conjugate for OA therapy and protection. The conjugate integrates dibenzaldehyde polyethylene glycol (DFPEG) with chitosan and polyethylene glycol diacrylate (PEGDA) through dynamic covalent bonds to form a dual-network hydrogel microsphere. Based on the progression of OA, the conjugate with the surface-anchored cyclic peptide cortistatin-14 (CST-14) achieves targeted drug therapy and a self-regulating hydrogel network. In cases of progressing inflammation (pH < 5), CST-14 dissociates from the microsphere surface (viz. the drug release rate increased) and inhibits TNF-α signaling to suppress OA. Concurrently, the monomer DFPEG responsively detaches from the hydrogel network and scavenges reactive oxygen species (ROS) to protect the cartilage tissue. The ROS scavenging of DFPEG is comparable to that of coenzyme Q10 and vitamin C. The degraded PEGDA microspheres provide tissue lubrication through reused conjugates. The rat OA model successfully achieved a synergistic therapeutic effect greater than the additive effect (1 + 1 > 2). This strategy offers an approach for anchoring amine-containing drugs and has marked potential for OA treatment and protection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11383433PMC
http://dx.doi.org/10.34133/bmr.0075DOI Listing

Publication Analysis

Top Keywords

polyethylene glycol
8
hydrogel network
8
nanoarchitectonics injectable
4
injectable biomimetic
4
biomimetic conjugates
4
conjugates cartilage
4
cartilage protection
4
protection therapy
4
therapy based
4
based degenerative
4

Similar Publications

Despite years of progress in biotechnology, altering the genetic makeup of many plant species, especially their plastids, remains challenging. The existence of a cell wall poses a significant obstacle to the effectual transportation of biomolecules. Developing efficient methods to introduce genes into plant cells and organelles without causing harm is an ongoing area of research.

View Article and Find Full Text PDF

Architecturally hindered crystallization of bottlebrush graft copolymers offers a reaction- and solvent-free pathway for creating injectable elastomers with tissue-mimetic softness. Currently, injectable materials involve solvents and chemical reactions, leading to uncontrolled swelling, leaching of unreacted moieties, and side reactions with tissue. To address this issue, bottlebrush copolymers with a poly(ethylene glycol) (PEG) amorphous block and crystallizable poly(lactic acid) (PLA) grafted chains (A--B) were synthesized, with grafted chains of controlled length arranged along the backbone at controlled spacing.

View Article and Find Full Text PDF

FXa-Responsive Hydrogels to Craft Corneal Endothelial Lamellae.

Adv Healthc Mater

January 2025

Max Bergmann Center of Biomaterials Dresden, Leibniz-Institut für Polymerforschung Dresden e. V., Hohe Str. 6, 01069, Dresden, Germany.

Cell-instructive polymer hydrogels are instrumental in tissue engineering for regenerative therapies. Implementing defined and selective responsiveness to external stimuli is a persisting challenge that critically restricts their functionality. Addressing this challenge, this study introduces a versatile, modular hydrogel system composed of four-arm poly(ethylene glycol)(starPEG)-peptide and glycosaminoglycan(GAG)-maleimide conjugates.

View Article and Find Full Text PDF

Therapeutic Black Phosphorus Nanosheets Elicit Neutrophil Response for Enhanced Tumor Suppression.

Adv Sci (Weinh)

January 2025

Department of General Surgery, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230036, P. R. China.

Black phosphorus (BP) has demonstrated potential as a drug carrier and photothermal agent in cancer therapy; however, its intrinsic functions in cancer treatment remain underexplored. This study investigates the immunomodulatory effects of polyethylene glycol-functionalized BP (BP-PEG) nanosheets in breast cancer models. Using immunocompetent mouse models-including 4T1 orthotopic BALB/c mice and MMTV-PyMT transgenic mice, it is found that BP-PEG significantly inhibits tumor growth and metastasis without directly inducing cytotoxicity in tumor cells.

View Article and Find Full Text PDF

While polyethylene terephthalate glycol (PETG) is widely used in orthodontic appliances such as clear aligners and retainers, there is limited experimental data assessing its performance under functional stresses, such as those encountered during dental movements and palatal expansion. This study aims to evaluate the ability of PETG thermoplastic material to withstand deformation under functional and expansion forces, specifically within the context of orthodontic applications. To estimate the firmness of the screw within the appliance, a universal Instron testing machine was used to record the forces released by each activation of the expander within the upper part of 10 clear modified twin blocks (MTBs) made from PETG and compare it with that released by 10 conventional twin blocks (CTBs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!