Synthetic hydrogels represent an exciting avenue in the field of regenerative biomaterials given their injectability, orthogonally tunable mechanical properties, and potential for modular inclusion of cellular cues. Separately, recent advances in soluble factor release technology have facilitated control over the soluble milieu in cell microenvironments via tunable microparticles. A composite hydrogel incorporating both of these components can robustly mediate tendon healing following a single injection. Here, a synthetic hydrogel system with encapsulated electrospun fiber segments and a novel microgel-based soluble factor delivery system achieves precise control over topographical and soluble features of an engineered microenvironment, respectively. It is demonstrated that three-dimensional migration of tendon progenitor cells can be enhanced via combined mechanical, topographical, and microparticle-delivered soluble cues in both a tendon progenitor cell spheroid model and an ex vivo murine Achilles tendon model. These results indicate that fiber reinforced hydrogels can drive the recruitment of endogenous progenitor cells relevant to the regeneration of tendon and, likely, a broad range of connective tissues.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11382351 | PMC |
http://dx.doi.org/10.1002/adfm.202207556 | DOI Listing |
Arthroscopy
January 2025
HSS Sports Medicine Institute, Hospital for Special Surgery; Orthopaedic Soft Tissue Research Program, Hospital for Special Surgery Research Institute. Electronic address:
The pathophysiology of rotator cuff disease is complex, involving intrinsic and extrinsic factors that contribute to mechanical alterations, inflammation, apoptosis, and neovascularization. These changes result in structural and cellular disruptions, including inflammatory cell infiltration and collagen disorganization. Macrophages have recently gained attention as critical mediators of tissue repair and regeneration.
View Article and Find Full Text PDFAntioxidants (Basel)
December 2024
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110000, China.
Traumatic tendon injuries generate reactive oxygen species and inflammation, which may account for slow or poor healing outcomes. Selenium is an essential trace element presented in selenoproteins, many of which are strong antioxidant enzymes. Selenium nanoparticles (SeNPs) have been reported to promote tissue repair due to their anti-oxidative, anti-inflammatory, anti-apoptotic, and differentiation-modulating properties.
View Article and Find Full Text PDFTissue Cell
December 2024
Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China. Electronic address:
Age-related diseases are often linked to chronic inflammation. Senescent cells secrete inflammatory cytokines, chemokines and matrix metalloproteinases, collectively referred to as the senescence-associated secretory phenotype (SASP). The current study discovered that aging leads to the accumulation of senescent tendon stem/progenitor cells (TSPCs) in tendon tissue, resulting in the development of a SASP.
View Article and Find Full Text PDFMol Med Rep
March 2025
School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China.
Rotator cuff tears (RCT) can cause shoulder pain, weakness and stiffness, significantly affecting daily life. Analysis of the GSE103266 dataset revealed significant changes in the mTOR/PI3K/Akt signaling pathway and lipid metabolism‑related pathways, suggesting that fatty infiltration may affect RCT. The analysis indicated that the ubiquitin ligase NEDD4 plays a critical role in RCT.
View Article and Find Full Text PDFJ Orthop Surg Res
December 2024
Department of Orthopedics, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang Province, 315000, China.
Background: Tendinopathy is very common in clinical practice, which is highly prevalent in athletes, sports enthusiasts and other people involved in high-load weight-bearing activities. Common types of tendinopathy include rotator cuff injury, Achilles tendinitis, tennis elbow and so on. Macrophages (Macs) are key immune cells in the pathogenesis of tendinopathy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!