Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Many skills that humans acquire throughout their lives, such as playing video games or sports, require substantial motor learning and multi-step planning. While both processes are typically studied separately, they are likely to interact during the acquisition of complex motor skills. In this work, we studied this interaction by assessing human performance in a sequential decision-making task that requires the learning of a non-trivial motor mapping. Participants were tasked to move a cursor from start to target locations in a grid world, using a standard keyboard. Notably, the specific keys were arbitrarily mapped to a movement rule resembling the Knight chess piece. In Experiment 1, we showed the learning of this mapping in the absence of planning, led to significant improvements in the task when presented with sequential decisions at a later stage. Computational modeling analysis revealed that such improvements resulted from an increased learning rate about the state transitions of the motor mapping, which also resulted in more flexible planning from trial to trial (less perseveration or habitual responses). In Experiment 2, we showed that incorporating mapping learning into the planning process, allows us to capture (1) differential task improvements for distinct planning horizons and (2) overall lower performance for longer horizons. Additionally, model analysis suggested that participants may limit their search to three steps ahead. We hypothesize that this limitation in planning horizon arises from capacity constraints in working memory, and may be the reason complex skills are often broken down into individual subroutines or components during learning.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11383687 | PMC |
http://dx.doi.org/10.1101/2024.08.29.610359 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!