Myelinating oligodendrocytes arise from the stepwise differentiation of oligodendrocyte progenitor cells (OPCs). Approximately 5% of all adult brain cells are OPCs. Why would a mature brain need such a large number of OPCs? New myelination is possibly required for higher-order functions such as cognition and learning. Additionally, this pool of OPCs represents a source of new oligodendrocytes to replace those lost during injury, inflammation, or in diseases such as multiple sclerosis (MS). How OPCs are instructed to differentiate into oligodendrocytes is poorly understood, and for reasons presently unclear, resident pools of OPCs are progressively less utilized in MS. The complement component 1, q subcomponent-like (C1QL) protein family has been studied for their functions at neuron-neuron synapses, but we show that OPCs express C1ql1. We created OPC-specific conditional knockout mice and show that C1QL1 deficiency reduces the differentiation of OPCs into oligodendrocytes and reduces myelin production during both development and recovery from cuprizone-induced demyelination. In vivo over-expression of C1QL1 causes the opposite phenotype: increased oligodendrocyte density and myelination during recovery from demyelination. We further used primary cultured OPCs to show that C1QL1 levels can bidirectionally regulate the extent of OPC differentiation in vitro. Our results suggest that C1QL1 may initiate a previously unrecognized signaling pathway to promote differentiation of OPCs into oligodendrocytes. This study has relevance for possible novel therapies for demyelinating diseases and may illuminate a previously undescribed mechanism to regulate the function of myelination in cognition and learning.

Download full-text PDF

Source
http://dx.doi.org/10.1111/febs.17256DOI Listing

Publication Analysis

Top Keywords

opcs
9
oligodendrocyte progenitor
8
progenitor cells
8
cells opcs
8
cognition learning
8
differentiation opcs
8
opcs oligodendrocytes
8
c1ql1
6
differentiation
5
oligodendrocytes
5

Similar Publications

Effect of Cytoskeletal Linker Protein GAS2L1 on Oligodendrocyte and Myelin Development.

Glia

January 2025

Key Laboratory of Brain, Cognition and Education Sciences of Ministry of Education; Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, and Center for Studies of Psychological Application, South China Normal University, Guangzhou, China.

Oligodendrocytes (OLs), the myelin-forming cells of the central nervous system (CNS), develop from OL precursor cells (OPCs) through a complex process involving significant morphological changes that are critically dependent on the dynamic interactions between cytoskeletal networks. Growth arrest-specific 2-like protein 1 (GAS2L1) is a cytoskeletal linker protein that mediates the cross-talk between actin filaments and microtubules. However, its role in OL and myelin development remains unknown.

View Article and Find Full Text PDF

Build muscles and protect myelin.

NeuroImmune Pharm Ther

September 2024

Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA.

Multiple sclerosis (MS) is a chronic and debilitating autoimmune disease of the central nervous system (CNS) in which a CNS-driven immune response destroys myelin, leading to wide range of symptoms including numbness and tingling, vision problems, mobility impairment, etc. Oligodendrocytes are the myelinating cells in the CNS, which are generated from oligodendroglial progenitor cells (OPCs) via differentiation. However, for multiple reasons, OPCs fail to differentiate to oligodendrocytes in MS and as a result, stimulating the differentiation of OPCs to oligodendrocytes is considered beneficial for MS.

View Article and Find Full Text PDF

Anti-Aβ immunotherapy use to treat Alzheimer's disease is on the rise. While anti-Aβ antibodies provide hope in targeting Aβ plaques in the brain there still remains a lack of understanding regarding the cellular responses to these antibodies in the brain. In this study we sought to identify acute effects of anti-Aβ antibody on immune responses.

View Article and Find Full Text PDF

This article examines the dual effects of occupational health and safety cost (OHSC) fluctuations due to the occupational accident number (OAN), and the impact of the OAN on operating period costs (OPCs). Initially, OHSCs, OANS and other operational data from the company were compiled to build a foundational infrastructure. Subsequently, econometric analysis using regression techniques was conducted to identify relationships between OHSCs and OANs, and between OHSCs and OPCs.

View Article and Find Full Text PDF

Organic photovoltaic materials typically exhibit low charge separation and transfer efficiency and severe exciton/carrier recombination due to high exciton binding energy and short exciton diffusion lengths, limiting the enhancement of photocatalytic hydrogen evolution performance. Here, we introduce a surface charge reversal strategy to regulate charge characters of organic photovoltaic catalyst (OPC). Compared to OPC nanoparticles (NPs) stabilized by anionic surfactant ((-) NPs), NPs stabilized by cationic surfactant ((+) NPs) exhibit a raised Fermi level, larger surface band bending and Schottky barrier, thereby enhancing charge separation and transfer efficiency while suppressing charge carrier recombination.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!