Nanomaterials, especially nanofibers, hold considerable promise as drug delivery systems (DDS) by providing targeted administration of drugs due to their unique properties, such as large surface area, high porosity, and mechanical robustness. Nanofibers can be fabricated using various techniques like electrospinning, self-assembly, phase separation, and template synthesis, offering properties such as adjustable size, shape, high precision, and biodegradability. Additionally, features such as multiple target functionalization, controlled release of the drug, and prolonged circulation of the drug make nanofibers particularly suitable for biomedical applications, including drug delivery, tissue regeneration, and biosensing. This comprehensive review explores the characteristics, types, fabrication methods, and applications of nanofibers. Diverse types of polymer nanofibers are used in drug delivery, such as blended nanofibers, core-shell nanofibers, and layer-by-layer assembly, each demonstrating their own advantages in controlled drug release and targeted therapy. Electrospun nanofibers are extensively utilized in biomedical applications due to their superior mechanical performance and high porosity and advancements in coaxial electrospinning enabling the fabrication of core-shell nanofibers, offering controlled drug release kinetics and protection of loaded molecules. These nanofibers demonstrate enhanced bioactivity and biocompatibility and can find application in tissue engineering. Furthermore, this review addresses the challenges associated with nanofiber production, including reproducibility and scalability. Nanofibers exhibit the potential to revolutionize medical treatment across diverse therapeutic areas. Future research directions and challenges in nanofiber-based drug delivery discussed in this review offer guidance for further advancements in this rapidly evolving field.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/0115672018325012240902122946 | DOI Listing |
Expert Opin Drug Deliv
January 2025
CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.
Introduction: Although there are numerous options for epilepsy treatment, its effective control continues unsatisfactory. Thus, search for alternative therapeutic options to improve the efficacy/safety binomial of drugs becomes very attractive to investigate. In this context, intranasal administration of antiseizure drugs formulated on state-of-the-art nanosystems can be a promising strategy.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
Faculty of Pharmacy, Integral University, Lucknow, 226026, India.
Alopecia, a common dermatological condition, poses significant psychological and social challenges. Despite the availability of various treatments, their efficacy is often limited by poor bioavailability and delivery challenges. Nanostructured lipid carriers have emerged as promising advanced drug delivery systems for alopecia treatment due to their ability to encapsulate both hydrophilic and lipophilic compounds, enhancing their stability, solubility, and controlled release.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt.
Antibody-drug conjugates (ADCs) have emerged as a promising strategy in targeted cancer therapy, enabling the precise delivery of cytotoxic agents to tumor sites while minimizing systemic toxicity. However, traditional ADCs face significant limitations, including restricted drug loading capacity, where an optimal drug-to-antibody ratio (DAR) is crucial; low DARs may lead to insufficient potency, while high DARs can cause rapid clearance and increased toxicity. Additionally, ADCs often suffer from instability in circulation due to the potential for premature release of cytotoxic agents, resulting in off-target effects and reduced therapeutic efficacy.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P. R. China.
Radiotherapy (RT) is widely applied in tumor therapy, but inevitable side effects, especially for skin radiation injury, are still a fatal problem and life-threatening challenge for tumor patients. The main components of topical radiation protection preparations currently available on the market are antioxidants, such as SOD, which are limited by their unstable activity and short duration of action, making it difficult to achieve the effects of radiation protection and skin radiation damage treatment. Therefore, we designed a drug-free antioxidant hydrogel patch with encapsulated bioactive epidermal growth factor (EGF) for the treatment of radiation skin injury.
View Article and Find Full Text PDFAdv Biol (Weinh)
January 2025
Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
Synthetic cells offer a versatile platform for addressing biomedical and environmental challenges, due to their modular design and capability to mimic cellular processes such as biosensing, intercellular communication, and metabolism. Constructing synthetic cells capable of stimuli-responsive secretion is vital for applications in targeted drug delivery and biosensor development. Previous attempts at engineering secretion for synthetic cells have been confined to non-specific cargo release via membrane pores, limiting the spatiotemporal precision and specificity necessary for selective secretion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!