Background: Drugs targeting disease causal genes are more likely to succeed for that disease. However, complex disease causal genes are not always clear. In contrast, Mendelian disease causal genes are well-known and druggable. Here, we seek an approach to exploit the well characterized biology of Mendelian diseases for complex disease drug discovery, by exploiting evidence of pathogenic processes shared between monogenic and complex disease. One way to find shared disease etiology is clinical association: some Mendelian diseases are known to predispose patients to specific complex diseases (comorbidity). Previous studies link this comorbidity to pleiotropic effects of the Mendelian disease causal genes on the complex disease.
Methods: In previous work studying incidence of 90 Mendelian and 65 complex diseases, we found 2,908 pairs of clinically associated (comorbid) diseases. Using this clinical signal, we can match each complex disease to a set of Mendelian disease causal genes. We hypothesize that the drugs targeting these genes are potential candidate drugs for the complex disease. We evaluate our candidate drugs using information of current drug indications or investigations.
Results: Our analysis shows that the candidate drugs are enriched among currently investigated or indicated drugs for the relevant complex diseases (odds ratio = 1.84, p = 5.98e-22). Additionally, the candidate drugs are more likely to be in advanced stages of the drug development pipeline. We also present an approach to prioritize Mendelian diseases with particular promise for drug repurposing. Finally, we find that the combination of comorbidity and genetic similarity for a Mendelian disease and cancer pair leads to recommendation of candidate drugs that are enriched for those investigated or indicated.
Conclusions: Our findings suggest a novel way to take advantage of the rich knowledge about Mendelian disease biology to improve treatment of complex diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11385846 | PMC |
http://dx.doi.org/10.1186/s12920-024-01988-3 | DOI Listing |
Electrophoresis
January 2025
Institute of Forensic Science, Fudan University, Shanghai, P. R. China.
The human skin and oral cavity harbor complex microbial communities, which exist in dynamic equilibrium with the host's physiological state and the external environment. This study investigates the microbial atlas of human skin and oral cavities using samples collected over a 10-month period, aiming to assess how both internal and external factors influence the human microbiome. We examined bacterial community diversity and stability across various body sites, including palm and nasal skin, saliva, and oral epithelial cells, during environmental changes and a COVID-19 pandemic.
View Article and Find Full Text PDFMycoses
January 2025
Clinical Microbiology Laboratory, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.
Background: Accurate identification of Fusarium species requires molecular identification. Treating fusariosis is challenging due to widespread antifungal resistance, high rates of treatment failure, and insufficient information relating antifungal susceptibility to the clinical outcome. Despite recent outbreaks in Mexico, there is limited information on epidemiology and antifungal susceptibility testing (AST).
View Article and Find Full Text PDFInvest New Drugs
January 2025
Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453100, Henan, China.
Gliomas are a heterogeneous type of central nervous system tumor. The etiology of glioma formation remains elusive, with approximately 5% of gliomas being familial, underscoring the significance of understanding genetic susceptibility in glioma development. In this study, a dual germline PTCH2 mutation [Ser391*, Leu104Pro] was identified in a family with a history of glioma, and sequencing data from WES/SimcereDx Neuro-Onco 360 including 910 Chinese patients with glioma and 1666 patients with solid tumors were analyzed.
View Article and Find Full Text PDFDrugs Aging
January 2025
Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, 60 Fenwood Road, no. 6016U, Boston, MA, 02115, USA.
Purpose Of Review: The purpose of this review is to outline considerations for treating older adults with rheumatoid arthritis-associated interstitial lung disease (RA-ILD) as it relates to infection, comorbidities, cancer, and quality of life.
Recent Findings: The recent 2023 American College of Rheumatology/American College of Chest Physicians guideline conditionally recommended specific disease-modifying antirheumatic drugs (DMARDs), antifibrotics, and short-term glucocorticoids to treat RA-ILD. Since RA-ILD often affects older adults, we contextualize these pharmacologic options related to infection, gastrointestinal (GI) effects, cancer, cardiovascular disease, and quality of life.
NPJ Biofilms Microbiomes
January 2025
A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology, and Research (A*STAR) & Skin Research Institute of Singapore (SRIS), Singapore, Republic of Singapore.
Sebaceous free fatty acids are metabolized by multiple skin microbes into bioactive lipid mediators termed oxylipins. This study investigated correlations between skin oxylipins and microbes on the superficial skin of pre-pubescent children (N = 36) and adults (N = 100), including pre- (N = 25) and post-menopausal females (N = 25). Lipidomics and metagenomics revealed that Malassezia restricta positively correlated with the oxylipin 9,10-DiHOME on adult skin and negatively correlated with its precursor, 9,10-EpOME, on pre-pubescent skin.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!