Background: Endometrial cancer is one of the major gynecological cancers, with increasing incidence and mortality in the past decades. Emerging preclinical and clinical data have indicated its close association with obesity and dyslipidemia. Metabolism reprogramming has been considered as the hallmark of cancer, to satisfy the extensive need of nutrients and energy for survival and growth. Particularly, lipid metabolism reprogramming has aroused the researchers' interest in the field of cancer, including tumorigenesis, invasiveness, metastasis, therapeutic resistance and immunity modulation, etc. But the roles of lipid metabolism reprogramming in endometrial cancer have not been fully understood. This review has summarized how lipid metabolism reprogramming induces oncogenesis and progression of endometrial cancer, including the biological functions of aberrant lipid metabolism pathway and altered transcription regulation of lipid metabolism pathway. Besides, we proposed novel therapeutic strategies of targeting lipid metabolism pathway and concentrated on its potential of sensitizing immunotherapy and hormonal therapy, to further optimize the existing treatment modalities of patients with advanced/metastatic endometrial cancer. Moreover, we expect that targeting lipid metabolism plus hormone therapy may block the endometrial malignant transformation and enrich the preventative approaches of endometrial cancer.
Conclusion: Lipid metabolism reprogramming plays an important role in tumor initiation and cancer progression of endometrial cancer. Targeting the core enzymes and transcriptional factors of lipid metabolism pathway alone or in combination with immunotherapy/hormone treatment is expected to decrease the tumor burden and provide promising treatment opportunity for patients with advanced/metastatic endometrial cancer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11385155 | PMC |
http://dx.doi.org/10.1186/s12964-024-01792-7 | DOI Listing |
Background: Abnormal glucose metabolism in AD brains correlates with cognitive deficits. The glucose changes are consistent with brain thiamine (vitamin B1) deficiency. In animals, thiamine deficiency causes multiple AD-like changes including memory loss, neuron loss, brain inflammation, enhanced phosphorylation of tau, exaggerated plaque formation and elevated advanced glycation end products (AGE).
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Georgia, College of Pharmacy, Athens, GA, USA.
Background: Lipids are key modulators in the pathogenesis of Alzheimer's disease (AD). Dysregulation of lipid homeostasis may disrupt the blood brain barrier, alter myelination, disturb cellular signaling and cause abnormal processing of the amyloid precursor protein. The purpose of this scoping review was to evaluate fatty acid supplementation in patients with AD.
View Article and Find Full Text PDFArch Physiol Biochem
January 2025
Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway.
Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) plays a crucial role in regulation of metabolic homeostasis. To understand the role of the catalytic α2 subunit of AMPK in skeletal muscle energy metabolism, myotube cultures were established from and mice. Myotubes from mice had lower basal oleic acid and glucose oxidation compared to myotubes from mice.
View Article and Find Full Text PDFComb Chem High Throughput Screen
January 2025
Department of Pharmacy, Taicang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangsu, China.
Objective: This study aimed to explore the active components and potential mechanism of Tanre Qing Injection (TRQI) in the treatment of Acute Respiratory Distress Syndrome (ARDS) using network pharmacology, molecular docking, and animal experiments.
Methods: The targets of active ingredients were identified using the TCMSP and Swiss Target Prediction databases. The targets associated with ARDS were obtained from the GeneCards database, Mala card database, and Open Targets Platform.
Diabetes Obes Metab
January 2025
Unit of Pediatrics Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy.
Aim: To assess the efficacy of the combined administration of myo-inositol and zinc, a mineral involved in the insulin pathway, in paediatric obesity with insulin resistance on HOMA-IR, glucose-insulin metabolism, and lipid profile.
Materials And Methods: Double-blind, randomized, placebo-controlled study conducted in North Italy. Fifty-six patients (10-18 years, Tanner stage ≥3) with obesity and insulin resistance were randomized to myo-inositol (2000 mg), zinc gluconate (5 mg), and galactooligosaccharides (GOS) from plant-based origin (1000 mg) (TRT) or placebo (PLC) containing only GOS from plant-based origin (1000 mg).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!