Background: Malaria remains an important public health problem, particularly in sub-Saharan Africa. In Rwanda, where malaria ranks among the leading causes of mortality and morbidity, disease transmission is influenced by climatic factors. However, there is a paucity of studies investigating the link between climate change and malaria dynamics, which hinders the development of effective national malaria response strategies. Addressing this critical gap, this study analyses how climatic factors influence malaria transmission across Rwanda, thereby informing tailored interventions and enhancing disease management frameworks.

Methods: The study analysed the potential impact of temperature and cumulative rainfall on malaria incidence in Rwanda from 2012 to 2021 using meteorological data from the Rwanda Meteorological Agency and malaria case records from the Rwanda Health Management and Information System. The analysis was performed in two stages. First, district-specific generalized linear models with a quasi-Poisson distribution were applied, which were enhanced by distributed lag non-linear models to explore non-linear and lagged effects. Second, random effects multivariate meta-analysis was employed to pool the estimates and to refine them through best linear unbiased predictions.

Results: A 1-month lag with specific temperature and rainfall thresholds influenced malaria incidence across Rwanda. Average temperature of 18.5 °C was associated with higher malaria risk, while temperature above 23.9 °C reduced the risk. Rainfall demonstrated a dual effect on malaria risk: conditions of low (below 73 mm per month) and high (above 223 mm per month) precipitation correlated with lower risk, while moderate rainfall (87 to 223 mm per month) correlated with higher risk. Seasonal patterns showed increased malaria risk during the major rainy season, while the short dry season presented lower risk.

Conclusion: The study underscores the influence of temperature and rainfall on malaria transmission in Rwanda and calls for tailored interventions that are specific to location and season. The findings are crucial for informing policy that enhance preparedness and contribute to malaria elimination efforts. Future research should explore additional ecological and socioeconomic factors and their differential contribution to malaria transmission.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11389490PMC
http://dx.doi.org/10.1186/s12936-024-05097-5DOI Listing

Publication Analysis

Top Keywords

malaria
15
climatic factors
12
malaria transmission
12
malaria risk
12
potential impact
8
rwanda
8
rwanda 2012
8
2012 2021
8
transmission rwanda
8
tailored interventions
8

Similar Publications

Circulating sexual stages of ) can be transmitted from humans to mosquitoes, thereby furthering the spread of malaria in the population. It is well established that antibodies can efficiently block parasite transmission. In search for naturally acquired antibodies targets on sexual stages, we established an efficient method for target-agnostic single B cell activation followed by high-throughput selection of human monoclonal antibodies (mAbs) reactive to sexual stages of in the form of gametes and gametocyte extracts.

View Article and Find Full Text PDF

Anaemia continues to be a major public health challenge in developing countries, particularly in Sub-Saharan Africa. This study estimated the proportion of anaemia cases that could be potentially prevented among children aged 6-59 months in Togo. Data from the 2017 national Malaria Indicator survey in Togo, the last one conducted to date, was used for this study.

View Article and Find Full Text PDF

Background: Malaria is one of the leading causes of morbidity and/or mortality in tropical Africa. The spread and development of resistance to chemical antimalarial drugs and the relatively high cost of the latter are problems associated with malaria control and are reasons to promote the use of plants to meet healthcare needs to treat malaria. The aim of this study was to evaluate antiplasmodial activities of extracts of (Mah quat), which is traditionally used for the treatment of malaria in the western region of Cameroon.

View Article and Find Full Text PDF

Metabolic changes that allow artemisinin-resistant parasites to tolerate oxidative stress.

Front Parasitol

September 2024

Centro de Cálculo Científico de la Universidad de Los Andes (CeCalCULA), Universidad de Los Andes (ULA), Mérida, Venezuela.

Artemisinin-based treatments (ACTs) are the first therapy currently used to treat malaria produced by . However, in recent years, increasing evidence shows that some strains of are less susceptible to ACT in the Southeast Asian region. A data reanalysis of several omics approaches currently available about parasites of that have some degree of resistance to ACT was carried out.

View Article and Find Full Text PDF

Further understanding of the molecular mediators of alternative RBC invasion phenotypes in endemic malaria parasites will support malaria blood-stage vaccine or drug development. This study investigated the prevalence of sialic acid (SA)-dependent and SA-independent RBC invasion pathways in endemic parasites from Cameroon and compared the schizont stage transcriptomes in these two groups to uncover the wider repertoire of transcriptional variation associated with the use of alternative RBC invasion pathway phenotypes. A two-color flow cytometry-based invasion-inhibition assay against RBCs treated with neuraminidase, trypsin, and chymotrypsin and deep RNA sequencing of schizont stages harvested in the first replication cycle in culture were employed in this investigation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!