Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Unhealthy diets high in fat and sugar content may have an impact on psychological health and increase the risk of Major Depressive Disorder (MDD) and stress levels. On the other hand, MDD and stress might be related to food choices and intake. However, it is not clear whether diet, and specifically fat and sugar intake, is causally related to stress and MDD, and whether this relationship may be bi-directional. This study utilised Mendelian Randomisation (MR) to investigate the causal nature of the relationship of fat and sugar intake with MDD and cortisol (as a proxy of stress), and to shed light on the direction of this relationship. Summary-level data for all exposure and outcome variables were obtained from large-scale, non-overlapping GWASs in individuals of European ancestry. Bidirectional analyses were performed: one with macronutrients as exposures and one with MDD/cortisol as exposures. Random-effects inverse-variance weighted regression was used as the primary analytic method for genetic instruments with at least two single nucleotide polymorphisms (SNPs) available (and individual Wald ratio was used when only one SNP was available). Higher levels of genetically predicted relative sugar intake were causally associated with lower MDD risk, for both genome-wide significant p-value threshold of p < 1 × 10, (OR = 0.553, 95% CI: 0.395-0.775) and relaxed p-value threshold of p < 1 × 10 (OR = 0.786, 95% CI: 0.630-0.981). No reverse causality was detected in the opposite direction as MDD was not associated with sugar consumption. The associations observed for all the other pairs of variables were weak and imprecise. A number of limitations was present in the study, such as low-SNP based heritability for some exposures, inability to prove whether variants were correlated with unmeasured confounders and self-reporting of MDD data. Lifestyle and/or pharmacological interventions targeting sugar-related physiological mechanisms may help to reduce depressive symptoms. However, more research is necessary on short- and long-term effects of sugar on the risk of MDD. Additionally, future studies should investigate whether the amount and type of sugar consumed may underlie the impact of sugar on mood and stress levels.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11387734 | PMC |
http://dx.doi.org/10.1038/s41398-024-03089-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!