SUB-immunogold-SEM reveals nanoscale distribution of submembranous epitopes.

Nat Commun

Department of Otolaryngology-Head & Neck Surgery, School of Medicine, 240 Pasteur Drive, Stanford University, Stanford, CA, 94305, USA.

Published: September 2024

Electron microscopy paired with immunogold labeling is the most precise tool for protein localization. However, these methods are either cumbersome, resulting in small sample numbers and restricted quantification, or limited to identifying protein epitopes external to the membrane. Here, we introduce SUB-immunogold-SEM, a scanning electron microscopy technique that detects intracellular protein epitopes proximal to the membrane. We identify four critical sample preparation factors contributing to the method's sensitivity. We validate its efficacy through precise localization and high-powered quantification of cytoskeletal and transmembrane protein distribution. We evaluate the capabilities of SUB-immunogold-SEM on cells with highly differentiated apical surfaces: (i) auditory hair cells, revealing the presence of nanoscale MYO15A-L rings at the tip of stereocilia; and (ii) respiratory multiciliate cells, mapping the distribution of the SARS-CoV-2 receptor ACE2 along the motile cilia. SUB-immunogold-SEM extends the application of SEM-based nanoscale protein localization to the detection of intracellular epitopes on the exposed surfaces of any cell.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11387508PMC
http://dx.doi.org/10.1038/s41467-024-51849-xDOI Listing

Publication Analysis

Top Keywords

electron microscopy
8
protein localization
8
protein epitopes
8
protein
5
sub-immunogold-sem
4
sub-immunogold-sem reveals
4
reveals nanoscale
4
nanoscale distribution
4
distribution submembranous
4
epitopes
4

Similar Publications

An unprecedented global outbreak caused by the monkeypox virus (MPXV) prompted the World Health Organization to declare a public health emergency of international concern on July 23, 2022. Therapeutics and vaccines for MPXV are not widely available, necessitating further studies, particularly in drug repurposing area. To this end, the standardization of in vitro infection systems is essential.

View Article and Find Full Text PDF

All-solid-state lithium metal batteries are regarded as next-generation devices for energy storage due to their safety and high energy density. The issues of lithium dendrites and poor mechanical compatibility with electrodes present the need for developing solid-state electrolytes with high stiffness and damping, but it is a contradictory relationship. Here, inspired by the superstructure of tooth enamel, we develop a composite solid-state electrolyte composed of amorphous ceramic nanotube arrays intertwined with solid polymer electrolytes.

View Article and Find Full Text PDF

Background: Resistance to temozolomide (TMZ) remains is an important cause of treatment failure in patients with glioblastoma multiforme (GBM). ADAR1, as a member of the ADAR family, plays an important role in cancer progression and chemotherapy resistance. However, the mechanism by which ADAR1 regulates GBM progression and TMZ resistance is still unclear.

View Article and Find Full Text PDF

Breast cancer patients experience more severe emotional distress and depression compared to those with other cancers. Selective serotonin reuptake inhibitors (SSRIs), like citalopram, are commonly used to treat depression. However, the link between SSRI use and breast cancer progression is debated.

View Article and Find Full Text PDF

Continuous Production of Influenza VLPs Using IC-BEVS and Multi-Stage Bioreactors.

Biotechnol Bioeng

January 2025

Instituto de Biologia Experimental e Tecnológica (iBET), Oeiras, Portugal.

The insect cell-baculovirus expression vector system (IC-BEVS) has been an asset to produce biologics for over 30 years. With the current trend in biotechnology shifting toward process intensification and integration, developing intensified processes such as continuous production is crucial to hold this platform as a suitable alternative to others. However, the implementation of continuous production has been hindered by the lytic nature of this expression system and the process-detrimental virus passage effect.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!