Aflatoxins are one of the most toxic mycotoxins and can cause serious harm to humans and animals. Adsorption is a practical decontamination technique favored by the industry because of its advantages of low cost, speed and simplicity, and environmental friendliness. In this work, the adsorption features of activated carbon and chitosan were fabricated in a composite through chemical co-precipitation to improve its properties for adsorption. Furthermore, the capacity of the synthesized chitosan and acid-washed activated carbon composite (CS-AAC) to attenuate the aflatoxins in contaminated peanut oil and the adsorption capacity at different initial aflatoxins content, contact duration, and temperature were evaluated. The results showed a higher adsorption capacity (removal efficiency to 93.45% of AFB, 94.05% of AFB, 89.16% of AFG, 83.26% of AFG). The Freundlich isothermal and D-R model and the pseudo-second-order rate expression both implied a good correlation with the test data and explained the adsorption mechanism well. The adsorption mechanism was found to be accomplished primarily via ion exchange and chelation. According to thermodynamic results (△G < 0, △H > 0, △S > 0), the adsorption process was endothermic and spontaneous. Compared to acid-washed activated carbon, CS-AAC enhanced the retention of V and sterols (especially V by 23%), and the safety of CS-AAC adsorbent was explored by cellular experiments. In conclusion, CS-AAC is a promising adsorbent material for the removal of aflatoxins from edible oils.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12550-024-00559-wDOI Listing

Publication Analysis

Top Keywords

activated carbon
16
acid-washed activated
12
adsorption capacity
12
aflatoxins contaminated
8
contaminated peanut
8
peanut oil
8
adsorption
8
adsorption mechanism
8
aflatoxins
5
safe detoxification
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!