Organization, conservation, and diversity of biosynthetic gene clusters in Bacillus sp. BH32 and its closest relatives in the Bacillus cereus group.

FEMS Microbiol Lett

Laboratoire de Biologie des Systèmes Microbiens (LBSM), Ecole Normale Supérieure de Kouba, Algiers, 16050, Algeria.

Published: January 2024

This study explores the organization, conservation, and diversity of biosynthetic gene clusters (BGCs) among Bacillus sp. strain BH32, a plant-beneficial bacterial endophyte, and its closest nontype Bacillus cereus group strains. BGC profiles were predicted for each of the 17 selected strains using antiSMASH, resulting in the detection of a total of 198 BGCs. We quantitatively compared the BGCs and analysed their conservation, distribution, and evolutionary relationships. The study identified both conserved and singleton BGCs across the studied Bacillus strains, with minimal variation, and discovered two major BGC synteny blocks composed of homologous BGCs conserved within the B. cereus group. The identified BGC synteny blocks provide insight into the evolutionary relationships and diversity of BGCs within this complex group.

Download full-text PDF

Source
http://dx.doi.org/10.1093/femsle/fnae071DOI Listing

Publication Analysis

Top Keywords

cereus group
12
organization conservation
8
conservation diversity
8
diversity biosynthetic
8
biosynthetic gene
8
gene clusters
8
bacillus cereus
8
evolutionary relationships
8
bgc synteny
8
synteny blocks
8

Similar Publications

Purpose: The purpose of this study was to explore the therapeutic potential of the novel combination of Bacillus bacteriophage lysin (PlyB) and a synthetic TLR2/4 inhibitor (oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine, OxPAPC) in the treatment of experimental Bacillus cereus endophthalmitis.

Methods: C57BL/6J mice were injected with 100 colony forming units (CFUs) Bacillus cereus to induce endophthalmitis. Two hours postinfection, groups of mice were treated with either PlyB, PlyB with OxPAPC, or the groups were left untreated to serve as a control.

View Article and Find Full Text PDF

Electrospinning is a versatile technique for obtaining nano/micro fibers which are able to significantly change the active properties of composite materials and bring in new dimensions to agri-food applications. Composite bio-based packaging materials obtained from whey proteins, functionalized with thyme essential oil (TEO) and reinforced by electrospun polylactic acid (PLA) fibers, represent a promising solution for developing new active food packaging using environmentally friendly materials. The aim of this study is to obtain and characterize one-side-active composite films covered with a PLA fiber mat: (i) WF/G1, WF/G2, and WF/G3 resulting from electrospinning with one needle at different electrospinning times of 90, 150, and 210 min, respectively, and (ii) WF/G4 obtained with two face-to-face needles after 210 min of electrospinning.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how well a gut bacteria strain, Bacillus cereus AP-01, can break down low-density polyethylene (LDPE), using experiments over 28 days to measure its effectiveness.
  • The researchers employed various methods like FTIR and SEM to analyze changes in LDPE structure and confirmed the bacterial strain through molecular characterization.
  • Results showed that the bacteria significantly degraded LDPE, with a 30.3% weight loss and changes in mechanical properties, highlighting its potential as a solution for plastic pollution.
View Article and Find Full Text PDF

Biofabrication of Silver Nanoparticles Using Extract and Evaluation of Their Antibacterial, Antioxidant, and Cytotoxic Properties.

Life (Basel)

December 2024

Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia.

The biosynthesis of silver nanoparticles using plant extracts is a promising field of research because of the useful biomedical applications of metal nanoparticles. In this study, the antibacterial and antioxidant properties of silver nanoparticles biosynthesized with the aqueous leaf extract of were defined using a simple, eco-friendly, consistent, and cost-effective method. The leaf extract of (PT) served as a capping and reducing agent to biosynthesize silver nanoparticles.

View Article and Find Full Text PDF

Maize ( L.), a key staple crop in Sub-Saharan Africa, is particularly vulnerable to concurrent drought and heat stress, which threatens crop yield and food security. Plant growth-promoting rhizobacteria (PGPR) have shown potential as biofertilizers to enhance plant resilience under such abiotic stresses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!