Effect of calcium concentration on metastasis of hepatocellular carcinoma cells cultured in alginate gel beads.

Colloids Surf B Biointerfaces

Innovative Engineering Technology Research Center for Cell Therapy, Shengjing Hospital of China Medical University, Shenyang, China; Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China; Laboratory of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China. Electronic address:

Published: January 2025

AI Article Synopsis

  • Changes in sodium alginate and calcium ion concentrations affect the structure of calcium alginate gel beads, which in turn impacts the behavior of cells encapsulated in them.
  • A study found that hepatocellular carcinoma (HCC) cells had a greater ability to invade when encapsulated in beads with a higher calcium concentration (200 mM) compared to a lower concentration (50 mM).
  • The higher calcium concentration also led to increased expression of metastasis-related genes and proteins, making these ALG beads a useful tool for studying liver cancer metastasis and testing new drugs.

Article Abstract

Changes in sodium alginate and calcium ion concentrations have a considerable impact on the structural properties of calcium alginate gel (ALG) beads, consequently influencing the biological characteristics of the cells encapsulated within them. This study aimed to examine the effects of calcium on the metastatic potential of hepatocellular carcinoma (HCC) cells encapsulated in ALG beads. The results showed that the invasion ability of HCC cells significantly increased when they were encapsulated in beads prepared with a calcium concentration of 200 mM compared to those prepared with a calcium concentration of 50 mM. Furthermore, the expression levels of genes related to metastasis were significantly elevated in ALG beads prepared with a calcium concentration of 200 mM. Specifically, the expression of activated matrix metalloproteinase 2 (MMP2), matrix metalloproteinase 9 (MMP9), and urokinase-type plasminogen activator system proteins was found to be high. Conversely, the expression of phosphatase and tensin homolog deleted on chromosome 10 was observed to be significantly reduced. These findings indicate that manipulating the calcium ion concentration during the fabrication of ALG beads enables the generation of three-dimensional HCC cells with varying metastatic capacities. This model offers a valuable tool for investigating the mechanisms underlying liver cancer metastasis and screening potential therapeutic drugs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2024.114201DOI Listing

Publication Analysis

Top Keywords

calcium concentration
16
alg beads
16
hcc cells
12
prepared calcium
12
calcium
8
hepatocellular carcinoma
8
alginate gel
8
calcium ion
8
cells encapsulated
8
beads prepared
8

Similar Publications

Encapsulation of Beauveria bassiana conidia as a new strategy for the biological control of Aedes aegypti larvae.

Sci Rep

December 2024

Laboratório de Entomologia e Fitopatologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro, 28013-602, Brazil.

The virulence of encapsulated fungal conidia against Aedes aegypti larvae was investigated. Molecular studies confirmed that the fungal isolate used here was Beauveria bassiana. Different conidial concentrations were tested.

View Article and Find Full Text PDF

Enhanced mechanical properties of alkali-activated dolomite dust emulsified asphalt composites.

Sci Rep

December 2024

School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, China.

The dolomite dust-emulsified asphalt composite (DAC) with excellent mechanical properties was successfully prepared using alkali activation. The effects of different alkali concentrations and emulsified asphalt contents on the mechanical properties of the materials were studied. And the micro-mechanisms of its mechanical performance changes were analyzed through SEM and XRD characterization.

View Article and Find Full Text PDF

Neurotransmitters are released from synaptic vesicles with remarkable precision in response to presynaptic calcium influx but exhibit significant heterogeneity in exocytosis timing and efficacy based on the recent history of activity. This heterogeneity is critical for information transfer in the brain, yet its molecular basis remains poorly understood. Here, we employ a biochemically-defined fusion assay under physiologically relevant conditions to delineate the minimal protein machinery sufficient to account for various modes of calcium-triggered vesicle fusion dynamics.

View Article and Find Full Text PDF

Titin is the third contractile filament in the sarcomere, and it plays a critical role in sarcomere integrity and both passive and active tension. Unlike the thick and thin filaments, which are polymers of myosin and actin, respectively, titin is a single protein that spans from Z-disk to M-line. The N2A region within titin has been identified as a signaling hub for the muscle and is shown to be involved in multiple interactions.

View Article and Find Full Text PDF

Diazotrophic cyanobacteria can overcome nitrogen (N)-limitation by fixing atmospheric N; however, this increases their energetic, iron, molybdenum, and boron costs. It is unknown how current and historic N-supplies affect cyanobacterial elemental physiology beyond increasing demands for elements involved in N-fixation. Here, we examined the changes in pigment concentrations, N-storage, and the ionome (i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!