A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

SMS2 siRNA inhibits pancreatic tumor growth by tumor microenvironment modulation. | LitMetric

SMS2 siRNA inhibits pancreatic tumor growth by tumor microenvironment modulation.

Int Immunopharmacol

Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, China. Electronic address:

Published: December 2024

The massive infiltration of suppressor immune cells within the tumor microenvironment (TME) of pancreatic ductal adenocarcinoma (PDAC) is a major cause of treatment resistance. Reducing this infiltration may represent a potentially effective therapeutic strategy. Sphingomyelin synthase 2 (SMS2) is a crucial enzyme for sphingomyelin synthesis, contributing significantly to the integrity and function of the plasma membrane. In this study, we developed a self-assembling SMS2 siRNA gene expression plasmid for in vivo delivery. The SMS2 siRNA specifically inhibits SMS2 expression while preserving the expression and activity of SMS1. Administration of the self-assembling SMS2 siRNA suppresses tumor growth in a murine model of Panc02 pancreatic carcinoma, modulates the polarization of tumor-associated macrophages (TAMs), and reduces the infiltration of tumor-associated neutrophils (TANs) by regulating the NF-κB/CXCL5 pathway. Consequently, utilizing SMS2 siRNA to improve the local immunosuppressive microenvironment holds promise for pancreatic cancer therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.intimp.2024.113111DOI Listing

Publication Analysis

Top Keywords

sms2 sirna
20
sirna inhibits
8
tumor growth
8
tumor microenvironment
8
self-assembling sms2
8
sms2
7
pancreatic
4
inhibits pancreatic
4
tumor
4
pancreatic tumor
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!