Rigid Ligand Confined Synthesis of Carbon Supported Dimeric Fe Sites with High-Performance Oxygen Reduction Reaction Activity for Quasi-Solid-State Rechargeable Zn-Air Batteries.

Angew Chem Int Ed Engl

International Cooperation United Laboratory of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.

Published: January 2025

Dimeric metal sites (DiMSs) in carbon-based single atom catalysts (SACs) offer distinct advantages in optimizing the adsorption energies of the catalytic intermediates and reaction pathways over single atom sites, which inspires the investigations on the rational design of DiMSs-based SACs and the accurate discernment of catalytic mechanisms. Here, dimeric Fe sites on carbon blacks (DiFe-N/CBs) are prepared using the precursor of metal-organic complex with a controlled structure, and the rigid ligand confinement secures the preservation of dimeric Fe sites during the thermal treatment. DiFe-N/CBs shows excellent electrocatalytic performance for oxygen reduction reaction (ORR) with a high half-wave potential of 0.917 V, and excellent durability with negligible activity decay. Theoretical studies reveal that the dimeric Fe sites have an optimal adsorption of OOH* with the Yeager-type binding, illustrating the advantages of DiMSs over SAs in catalyzing ORR. The rechargeable aqueous and quasi-solid-state Zn-air batteries assembled using DiFe-N/CBs-based air cathodes achieve small voltage gaps after long term charge/discharge test, showing great promises for practical applications. This synthetic strategy serves a novel platform to produce a scope of catalysts incorporating multimeric metal sites, and studies on the catalytic mechanism lay the foundation for establishing cooperative effect for multidentate adsorption reactions.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202413933DOI Listing

Publication Analysis

Top Keywords

dimeric sites
16
rigid ligand
8
oxygen reduction
8
reduction reaction
8
zn-air batteries
8
metal sites
8
single atom
8
sites
7
dimeric
5
ligand confined
4

Similar Publications

Structural basis of phosphate export by human XPR1.

Nat Commun

January 2025

Center for Life Sciences, Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, China.

Phosphorus in crucial for all living organisms. In vertebrate, cellular phosphate homeostasis is partly controlled by XPR1, a poorly characterized inositol pyrophosphate-dependent phosphate exporter. Here, we report the cryo-EM structure of human XPR1, which forms a loose dimer with 10 transmembrane helices (TM) in each protomer.

View Article and Find Full Text PDF

Proton-electron mixed conductors (PEMCs) are an essential component for potential applications in hydrogen separation and energy conversion devices. However, the exploration of PEMCs with excellent mixed conduction, which is quantified by the ambipolar conductivity, σ = σσ/(σ + σ) (σ: electronic conductivity; σ: proton conductivity), is still a great challenge, largely due to the lack of structural characterization of both conducting mechanisms. In this study, we prepared a molecule-based proton-electron mixed-conducting cation radical salt, (ET)[Pt(pop)(Hpop)]·PhCN (ET: bis(ethylenedithio)tetrathiafulvalene, pop: PHO), by electrocrystallization.

View Article and Find Full Text PDF

Germanium is known to occupy tetrahedral sites by substituting silicon in germanosilicate zeolites. In this study, we present pioneering findings regarding the synthesis of zeolites with an MFI structure (GeMFI) incorporating a high germanium amount (16% Ge). Remarkably, the germanium atoms feature a slight electron deficiency with respect to GeO, and the typical coordination number of 4, as usually reported for the germanosilicate zeolites, is exceeded, giving rise to Ge dimers in a double-bridge configuration.

View Article and Find Full Text PDF

A divergent two-domain structure of the anti-Müllerian hormone prodomain.

Proc Natl Acad Sci U S A

January 2025

Department of Molecular & Cellular Biosciences, University of Cincinnati, Cincinnati, OH 45267.

TGFβ family ligands are synthesized as precursors consisting of an N-terminal prodomain and C-terminal growth factor (GF) signaling domain. After proteolytic processing, the prodomain typically remains noncovalently associated with the GF, sometimes forming a high-affinity latent procomplex that requires activation. For the TGFβ family ligand anti-Müllerian hormone (AMH), the prodomain maintains a high-affinity interaction with its GF that does not render it latent.

View Article and Find Full Text PDF

In the field of quantum materials, understanding anomalous behavior under charge degrees of freedom through bond formation is of fundamental importance, with two key concepts: Dimerization and charge order at different cation sites. The coexistence of both dimerization and charge ordering is unusually found in NaRu2O4, even in its metallic state at room temperature. Our work unveils the origin of the interplay of these effects within metallic single-crystalline NaRu2O4.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!