In this study, we present the development of a ReaxFF Pt/Cl/H reactive force field designed to elucidate the etching process by Cl for Pt surfaces. The ReaxFF force field parameters were optimized based on a quantum mechanical training set, which included adsorption energies of Cl and dissociation of HCl on Pt(100) and Pt(111) surfaces, energy/volume relations of PtCl crystals, and Cl diffusion on Pt(100) and Pt(111) surfaces. The predictive capability of the force field was further established through molecular dynamics simulations, which investigated the interactions of Cl and HCl molecules with the (100) and (111) surfaces of c-Pt crystalline solid slabs. A comparative analysis revealed that the Pt (100) surface exhibited higher susceptibility to chlorination and etching, leading to a more dominant removal of surface Pt atoms, whereas the Pt (111) surface showed greater resistance to these processes. This resistance impeded the access of Cl atoms to the Pt surface, resulting in a slower formation of PtCl molecules. The etching ratios between HCl and Cl were compared with experimental results, yielding satisfactory agreement. This indicates that the developed ReaxFF protocol serves as a valuable tool for studying atomistic-scale details of the etching process in platinum metal systems.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpca.4c01708DOI Listing

Publication Analysis

Top Keywords

force field
16
development reaxff
8
reactive force
8
platinum metal
8
etching process
8
pt100 pt111
8
pt111 surfaces
8
etching
5
reaxff reactive
4
force
4

Similar Publications

We argue that "processes versus objects" is not a useful dichotomy. There is, instead, substantial theoretical utility in viewing "objects" and "processes" as complementary ways of describing persistence through time, and hence the possibility of observation and manipulation. This way of thinking highlights the role of memory as an essential resource for observation, and makes it clear that "memory" and "time" are also mutually inter-defined, complementary concepts.

View Article and Find Full Text PDF

Enzyme-enzyme interactions are fundamental to the function of cells. Their atomistic mechanisms remain elusive mainly due to limitations of in-cell measurements. We address this challenge by atomistically modeling, for a total of ≈80 μs, a slice of the human cell cytoplasm that includes three successive enzymes along the glycolytic pathway: glyceraldehyde-3-phosphate dehydrogenase (GAPDH), phosphoglycerate kinase (PGK), and phosphoglycerate mutase (PGM).

View Article and Find Full Text PDF

Optimizing Nanobubble Production in Ceramic Membranes: Effects of Pore Size, Surface Hydrophobicity, and Flow Conditions on Bubble Characteristics and Oxygenation.

Langmuir

January 2025

John A. Reif, Jr. Department of Civil and Environmental Engineering, New Jersey Institute of Technology, 323 Martin Luther King Blvd., Newark, New Jersey 07102, United States.

Precise control of nanobubble size is essential for optimizing the efficiency and performance of nanobubble applications across diverse fields, such as agriculture, water treatment, and medicine. Producing fine bubbles, including nanobubbles, is commonly achieved by purging gas through porous media, such as ceramic or polymer membranes. Many operational factors and membrane properties can significantly influence nanobubble production and characteristics.

View Article and Find Full Text PDF

Symmetry Breaking: Case Studies with Organic Cage-Racemates.

Acc Chem Res

January 2025

School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.

ConspectusSymmetry is a pervasive phenomenon spanning diverse fields, from art and architecture to mathematics and science. In the scientific realms, symmetry reveals fundamental laws, while symmetry breaking─the collapse of certain symmetry─is the underlying cause of phenomena. Research on symmetry and symmetry breaking consistently provides valuable insights across disciplines, from parity violation in physics to the origin of homochirality in biology.

View Article and Find Full Text PDF

How well do empirical molecular mechanics force fields model the cholesterol condensing effect?

J Chem Phys

January 2025

School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom.

Membrane properties are determined in part by lipid composition, and cholesterol plays a large role in determining these properties. Cellular membranes show a diverse range of cholesterol compositions, the effects of which include alterations to cellular biomechanics, lipid raft formation, membrane fusion, signaling pathways, metabolism, pharmaceutical therapeutic efficacy, and disease onset. In addition, cholesterol plays an important role in non-cellular membranes, with its concentration in the skin lipid matrix being implicated in several skin diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!