Three-dimensional alicyclic skeletons with multiple stereochemically defined chiral centers are highly valuable in modern drug discovery. Here, we reported a diverse approach to access 1,2- and 1,3-disubstituted chiral cycloalkanes by the strategy of NiH-catalyzed, transannular-directed alkene desymmetrization. The ring strain of the bridged bicyclic organonickel intermediate and the coordination effect of the ligand were identified as crucial factors in determining site selectivity by influencing the NiH migration step. This methodology demonstrates a broad substrate scope and displays good tolerance toward various functional groups, resulting in excellent outcomes in terms of the yield, regioselectivity, and enantioselectivity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.orglett.4c02975 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!