A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Heterogeneity in establishment of polyethylene glycol-mediated plasmid transformations for five forest pathogenic Phytophthora species. | LitMetric

Heterogeneity in establishment of polyethylene glycol-mediated plasmid transformations for five forest pathogenic Phytophthora species.

PLoS One

Department of Forest & Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, British Columbia, Canada.

Published: September 2024

Plasmid-mediated DNA transformation is a foundational molecular technique and the basis for most CRISPR-Cas9 gene editing systems. While plasmid transformations are well established for many agricultural Phytophthora pathogens, development of this technique in forest Phytophthoras is lacking. Given our long-term research objective to develop CRISPR-Cas9 gene editing in a forest pathogenic Phytophthora species, we sought to establish the functionality of polyethylene glycol (PEG)-mediated plasmid transformation in five species: P. cactorum, P. cinnamomi, P. cryptogea, P. ramorum, and P. syringae. We used the agricultural pathogen P. sojae, a species for which PEG-mediated transformations are well-established, as a transformation control. Using a protocol previously optimized for P. sojae, we tested transformations in the five forest Phytophthoras with three different plasmids: two developed for CRISPR-Cas9 gene editing and one developed for fluorescent protein tagging. Out of the five species tested, successful transformation, as indicated by stable growth of transformants on a high concentration of antibiotic selective growth medium and diagnostic PCR, was achieved only with P. cactorum and P. ramorum. However, while transformations in P. cactorum were consistent and stable, transformations in P. ramorum were highly variable and yielded transformants with very weak mycelial growth and abnormal morphology. Our results indicate that P. cactorum is the best candidate to move forward with CRISPR-Cas9 protocol development and provide insight for future optimization of plasmid transformations in forest Phytophthoras.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11386421PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0306158PLOS

Publication Analysis

Top Keywords

plasmid transformations
12
transformations forest
12
crispr-cas9 gene
12
gene editing
12
forest phytophthoras
12
forest pathogenic
8
pathogenic phytophthora
8
phytophthora species
8
transformations
7
forest
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!