Background: Vancomycin-resistant enterococci (VRE) represent a public health threat due to the few available treatments. Such alarm has triggered worldwide initiatives to develop effective antimicrobial compounds and novel delivery and therapeutic strategies. vanA operon is responsible for most cases of acquired vancomycin resistance in enterococci.
Objectives: Development of a transcription factor decoy (TFD) system as a vanA gene transcription-inhibitor.
Methods: Vancomycin MIC was determined in the presence of TFD-lipoplexes. Additionally, the effect of TFD-lipoplexes on the expression level of the vanA gene and the growth pattern of E. faecalis was evaluated. The haemolytic activity of the developed TFD-lipoplexes and their cytotoxicity were examined. TFD-lipoplexes efficiency in treating vancomycin-resistant E. faecalis (VREF) infection was tested in vivo using a systemic mice infection model.
Results: A reduction in vancomycin MIC against VRE from 256 mg/L (resistant) to 16 mg/L (intermediate susceptible), in the presence of TFD-lipoplexes, was recorded. The developed TFD-lipoplexes lacked any effect on E. faecalis growth and significantly reduced the transcription level of the vanA gene by about 3-fold. In an initial evaluation of the safety of TFD-lipoplexes, they were found not to be overtly haemolytic to human blood or cytotoxic to human skin fibroblast cells. The co-administration of TFD-lipoplexes and vancomycin efficiently eradicated VREF infection in vivo.
Conclusions: The developed TFD-lipoplexes successfully restored vancomycin activity against VREF. They offer a safe effective unconventional therapy against this stubborn organism and present a revolution in gene therapy that can be applied to other resistance-encoding genes in various organisms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jac/dkae320 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!